
Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Exploring Massive Parallel Computation
with GPU

Ian Bond

Massey University, Auckland, New Zealand

2011 Sagan Exoplanet Workshop
Pasadena, July 25-29 2011

Ian Bond | Microlensing parallelism 1/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Assumptions/Purpose

You are all involved in microlensing modelling and you
have (or are working on) your own code
this lecture shows how to get started on getting code to
run on a GPU
then its over to you . . .

Ian Bond | Microlensing parallelism 2/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Outline

1 Need for parallelism

2 Graphical Processor Units

3 Gravitational Microlensing Modelling

Ian Bond | Microlensing parallelism 3/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Paralel Computing

Parallel Computing is use of multiple computers, or
computers with multiple internal processors, to solve a
problem at a greater computational speed than using a
single computer (Wilkinson 2002).
How does one achieve parallelism?

Ian Bond | Microlensing parallelism 4/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Grand Challenge Problems

A grand challenge problem is one that cannot be solved
in a reasonable amount of time with todays computers’
Examples:
– Modelling large DNA structures
– Global weather forecasting
– N body problem (N very large)
– brain simulation
Has microlensing modelling become a grand challenge
problem?

Ian Bond | Microlensing parallelism 5/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Achieving Parallelism

History
– Thinking Machines, Cray, Sun Starfire, Beowulf
clusters,. . .
Three ways of achieving parallelism today
– Shared memory multiprocessor
– Distributed Memory multicomputer
– Graphical processing units

Ian Bond | Microlensing parallelism 6/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Flynns Classifications

SISD. Single instruction, single data stream
– a single stream of instructions is generated by the
program and operates on a single stream of data items.
SIMD. Single instruction, multiple data stream
– instructions from program are broadcast to more than
one Processor. Each processor executes the same
instruction in synchronism, but using different data.
MISD. Multiple instruction, single data stream
– a computer with multiple processors each sharing a
common memory. There are multiple streams of
instructions and one stream of data.
MIMD. Multiple instruction, multiple data stream
– each instruction stream operates upon different data.

Ian Bond | Microlensing parallelism 7/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

SMM Systems

Examples: most multicore PCs
All memory shared across all processors via a single
address space
Program using threads. OpenMP makes it easier.

Ian Bond | Microlensing parallelism 8/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

DMM Systems

Distributed Memory Multicomputers: aka cluster computers.
Two programming models:

Multiple Program Multiple Data (MPMD)
– Each processor will have its own program to execute
– Parallel Virtual Machine (PVM) library
Single Program Multiple Data (SPMD)
– A single source program is written, and each processor
executes its own personal copy of the program
– MPI standard

Ian Bond | Microlensing parallelism 9/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

MPI (Message Passing Interface)

Standard for communication across several processors,
developed by group of academics and industrial partners
MPI is a standard - it defines routines, not
implementations
Several free implementations exist: openmpi for Ubuntu.

Ian Bond | Microlensing parallelism 10/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Outline

1 Need for parallelism

2 Graphical Processor Units

3 Gravitational Microlensing Modelling

Ian Bond | Microlensing parallelism 11/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

What are GPUs?

A GPU (on a graphics card) offloads/accelerates
graphics rendering from a CPU.
Modern GPU functions:
– rendering polygons
– texture mapping
– coordinate transformations
– accelerated video decoding
Manufacturers
– NVIDIA
– ATI

Ian Bond | Microlensing parallelism 12/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

GPGPU

General Purpose Computing on Graphical Processing
Units
– using a GPU for applications traditionally handled by a
CPU
Stream Processing
– stream of data
– a series of operations applied to that stream—the
kernel functions
SPMD
– single program, multiple data
– related to, but not the same as SIMD

Ian Bond | Microlensing parallelism 13/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

GPU architecture

Physical layout varies among GPU makes and models, but
follows this general idea:

GPU divided into blocks
Each block contains one or more streaming
multiprocessors
Each SM has a number of streaming processors
– all share the same control logic and instruction cache
within an SM
All SPs from all SMs have access to up to 4 GB GDDR
DRAM global memory
– GDDR: graphics double data rate
– DRAM: dynamic random access memory

Ian Bond | Microlensing parallelism 14/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Programming GPUs

Approach is to make use of the GPU AND the CPU
CUDA
– Compute Unified Device Architecture
– Developed and distributed by NVIDIA
OpenCL
– tedious and not as good performance as CUDA
(according to NVIDIA)

Now lets get started...

Ian Bond | Microlensing parallelism 15/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Setting Up CUDA

See http:
//www.r-tutor.com/gpu-computing/cuda-installation/cuda3.2-ubuntu

Make sure you have a graphics card, install Ubuntu.
Disable the nouveau nvidia driver that comes with Ubuntu. Reboot in safe
graphics mode (hold down shift key)
Install the linux developer tools and the OpenGL development driver.
Install the CUDA development driver (after downloading from CUDA
download site). Switch to console mode for this (ctrl-alt-f2).
Download and install the CUDA toolkit. Usually in /usr/local/cuda

Download and install the CUDA SDK samples. Usually in your personal home
directory.

Ian Bond | Microlensing parallelism 16/40

http://www.r-tutor.com/gpu-computing/cuda-installation/cuda3.2-ubuntu
http://www.r-tutor.com/gpu-computing/cuda-installation/cuda3.2-ubuntu


Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Check out your system

Run the device query sample program from your CUDA
SDK samples:
$ cd ˜/CUDASDK3.2/C/bin/linux/release/
$ ./deviceQuery

Look at the output:
– How many graphics devices are there?
– How many multiprocessors and cores?
– How much global memory?
– . . .

Ian Bond | Microlensing parallelism 17/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Device Query Screenshot

Ian Bond | Microlensing parallelism 18/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

NVIDIA GeForce GTX 480

Ian Bond | Microlensing parallelism 19/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

CUDA processing flow

Need to identify those parts of the program that operate on
the host (CPU) and the device (GPU).

CPU Serial Code

GPU kernelA<<<. . . ,. . .>>>()

CPU Serial Code

GPU kernelB<<<. . . ,. . .>>>()

Ian Bond | Microlensing parallelism 20/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

First CUDA Program

Perform element-wise vector addition, with each vector
element being handled by one thread
// Import the cuda headers , along with any other required C headers
#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device . This i s executed by ONE
// stream processor
__global__ void vec_add(float* A, float* B, float* C, int N)
{

// What element of the array does th is thread work on
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N)
C[i] = A[i] + B[i];

}

Ian Bond | Microlensing parallelism 21/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

First CUDA Program (contd.)

// main routine that executes on the host
int main(void)
{
int n;
int N = 1000000;
size_t size = N * sizeof(float);

// Allocate in HOST memory
float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

// I n i t i a l i z e vectors
for (n = 0; n < N; ++n) {
h_A[n] = 3.2333 * n;
h_B[n] = 8.09287 * n;

}

Ian Bond | Microlensing parallelism 22/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

First CUDA Program (contd.)

// Allocate in DEVICE memory (note the address of pointer argument)
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, size);
cudaMalloc(&d_B, size);
cudaMalloc(&d_C, size);

// Copy vectors from host to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Ian Bond | Microlensing parallelism 23/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

First CUDA Program (contd.)

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
vec_add<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

// Copy resu l t from device memory into host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

Ian Bond | Microlensing parallelism 24/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

First CUDA Program (contd.)

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

// Free host memory
free(h_A);
free(h_B);
free(h_C);

Build using cuda compiler and linker
$ nvcc -o testprog1 testprog1.cu
$ ./testprog1

Ian Bond | Microlensing parallelism 25/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Run a Profile Analysis

$ cd /usr/local/cuda/computeprof/bin
$ ./computeprof

Ian Bond | Microlensing parallelism 26/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Important Constructs

Important Functions
cudaMalloc(device_address, size);

cudaMemcpy(dest, source, size, cudaMemcpyHostToDevice)

cudaMemcpy(dest, source, size, cudaMemcpyDeviceToHost)

Function modifier keywords
__global__: called by host, executed on device
__device__: called by and executed on device
__host__: called by and executed on host
Kernel Functions
Code to be run on an SP
mykernel<<<blocks_per_grid, threads_per_block>>>

Ian Bond | Microlensing parallelism 27/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Programming Hardware Abstractions

host (CPU) and device (GPU)
thread
– concurrent code executed on an SP
– fine grain unit of parallelism
warp
– group of threads executed in parallel (up to a
maximum number)
block
– group of threads executed together and form the unit
of resource assignment
grid
– group of thread blocks that must all complete before
control is returned to the host

Ian Bond | Microlensing parallelism 28/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Organizing threads

Threads in a warp can share instruction stream
Each thread has its own registers and local memory
Threads in a block can communicate by shared memory
All threads in a grid can access the same global memory
(but 200–600 cycle penalty)
Need to decide how many blocks in the grid, and how
many threads in each block.
Can arrange blocks and threads in 1, 2, or 3 dimensions

Ian Bond | Microlensing parallelism 29/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Example: matrix multiplication

// Matrix mult ipl icat ion kernel : C = A ∗ B
__global__ void mx_mult(float* A, float* B, float* C, int width)
{

// What i s the matrix element for th is thread?
int col = blockDim.x * blockIdx.x + threadIdx.x;
int row = blockDim.y * blockIdx.y + threadIdx.y;

float sum = 0;
for (int k = 0; k < width; ++k) {
float elementA = A[row * width + k];
float elementB = B[k * width + col];
sum += elementA * elementB;

}
C[row * width + col] = sum;

}
int main(void) {
...

// 2 dimensional arrangement of threads and blocks
int blockWidth = 30;
int gridWidth = 15;
dim3 dimBlock(blockWidth, blockWidth);
dim3 dimGrid(gridWidth, gridWidth);
mx_mult<<<dimGrid, dimBlock>>>(d_A, d_B, d_C, width);
...

}

Ian Bond | Microlensing parallelism 30/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

CUDA Device Memory Types

GlobalMemory
– largest memory on GPU and accessible by all threads
– slowest access time - ∼200–600 clock cycles
– lifetime: application
Registers
– fastest memory, used to store local variables of a single thread
– lifetime: thread
Local memory
– section of device memory used when variables of a thread do not fit the
registers available
– lifetime: thread
Shared memory
– fast on chip memory shared between all threads of a single block
– lifetime: block
Texture memory
– a cached region of global memory
– each SM has its own texture memory cache on chip
– lifetime: application
Constant memory
– a cached read-only region of deice memory on each SM
– lifetime: application

Ian Bond | Microlensing parallelism 31/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Performance

GPU bundles several threads together for execution into
"warps"
Thread index values within a warp are contiguous. For
warp size of 32 (eg GTX480) we have
threadIdx.x 0 → 31 in warp 0
threadIdx.x 32 → 63 in warp 1
. . .
Bit more complicated for multidimensional thread
organization

Ian Bond | Microlensing parallelism 32/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Branching

Single Instruction Multiple Thread
– executes instruction for all threads in the warp, before
moving onto next instruction
Divergence occurs when threads in a warp follow
different control flows. Sequential passes are then
needed which can affect performance
Also be careful of conditionals based on thread ID

Ian Bond | Microlensing parallelism 33/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Memory Access

DRAM memory access patterns
– Fast: accessing data from multiple and contiguous
locations
– Slow: truly random access
Ideal access pattern in GPUs
– all threads in a warp access consecutive global
memory locations
Coalescing memory access
– hardware can combine all of these accesses into a
single request
Non-coalescing memory access affects performance

Ian Bond | Microlensing parallelism 34/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Outline

1 Need for parallelism

2 Graphical Processor Units

3 Gravitational Microlensing Modelling

Ian Bond | Microlensing parallelism 35/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Work in progress. . .

Work done by PhD student Joe Ling, Massey University
(thesis due soon!)

Unroll small loops
- Reducing a few instructions per loop can add up to
significant saving when performing the computation
billions of time.
- There is 8%-9% improvement in performance by just
unrolling the lens equation in ray shooting.

Ian Bond | Microlensing parallelism 36/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Work in progress. . .

Magnification Map generation
– Coalescing memory read/write has significant impact on
performance.
– When writing to random memory position, atomic instruction is
needed. For example, binning rays in rays shooting.
– Make sure there are enough blocks to hide the memory latency.
– Use as less registers per threads as possible in order to fit more
blocks into a MP.
– Number of threads per block should be multiple of warp size.
– Use constant memory (pass as argument) instead of loading
input parameters from global memory.

Ian Bond | Microlensing parallelism 37/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Work in progress. . .

Magnification Map reading
– Texture memory should be used instead of global
memory as memory reading is usually not coalescing
– Take advantage of locality as texture memory is
cached
Dynamic light curve calculation
–Ray shooting sum can be done very quickly on the
GPU but solving the image positions is usually faster by
using the CPU.
– Minimize divergent warps.
– Our programming model: Multi-thread images solving
code by CPU & ray shooting sum code by GPU.

Ian Bond | Microlensing parallelism 38/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Work in progress. . .

Other Stuff
– Fermi is now implemented the IEEE 754-2008
floating-point standard.
– Fermi’s double precision arithmetic is 8 times slower
then single precision on consumer hardware (1/2 in
commercial hardware).
– But better precision can be achieved by shifting even
with single precision arithmetic.
– Only commercial hardware has ECC check, it is
disabled on consumer hardware.

Ian Bond | Microlensing parallelism 39/40



Need for parallelism Graphical Processor Units Gravitational Microlensing Modelling

Further Reading

Parallel Programming, B. Wilkinson & M. Allen
– a classic text on parallel programming. Deals mainly
with cluster computing and message passing
programming, but concepts in parallelizing numerical
algorithms are still relevant to GPU programmers
Programming Massively Parallel Processors, D.B. Kirk
& W. W. Hwu
– the definitive guide to CUDA and programming GPUs
Ken’s paper
RTFM!

Ian Bond | Microlensing parallelism 40/40


	Need for parallelism
	Graphical Processor Units
	Gravitational Microlensing Modelling

