Single Lens Lightcurve Modeling

Scott Gaudi
The Ohio State University
2011 Sagan Exoplanet Summer Workshop
Exploring Exoplanets with Microlensing
July 26, 2011

Outline.

- Basic Equations.
- Limits.
- Derivatives.
- Degeneracies.
- Fitting.
 - Linear Fits.
 - Multiple Observatories.
 - Nonlinear fits.
- Complications.
- Summary & References.

Simplest Model.

- Single Source
- Single Lens.
- Rectilinear Trajectory.
 - No acceleration in lens, source, observer.
- Point source.
- Cospatial observers.

Rectilinear Trajectories.

Rectilinear trajectory

$$u(t) = (\tau^2 + u_0^2)^{1/2}$$

 $\overline{(u, \, \tau, \, u_0 \, \text{in units of} \, \theta_E)}$

where

$$\tau = \frac{t - t_0}{t_{\rm E}}$$

Parameters: t_0 , t_F , u_0

Einstein Timescale.

Time to cross the angular Einstein ring radius.

$$t_{\rm E} \equiv \frac{\theta_{\rm E}}{\mu}$$

- μ is the relative lens-source proper motion.
- Timescale is a degenerate combination of the lens mass, lens and source distances, and the lens and source relative proper motion.
- Median timescale for events toward the bulge is
 ~20 days; range from a few to hundreds of days.

Magnifications.

 Can be derived simply:

$$\left| A_{\pm} = \left| \frac{y_{\pm}}{u} \frac{dy_{\pm}}{du} \right| = \frac{1}{2} \left(\frac{u^2 + 2}{u\sqrt{u^2 + 4}} \pm 1 \right)$$

- Note that: $A_{+} A_{-} = 1$
- Total magnification:

$$A = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

Magnification vs. Time

- Three parameter family of curves.
- Parameters: t_0 , t_E , u_0

Limits.

• Limits for low and high mag.events.

$$A \approx 1 + 2u^{-4} \text{ for } u >> 1$$

$$A \approx u^{-1}$$
 for $u << 1$

Flux (not magnification).

- Magnification is *not* directly observable.
- We observe the flux from the lensed source and any unresolved "blends".
- Includes light from:
 - Lens.
 - Companions to the lens.
 - Companions to the source.
 - Unrelated stars.

$F(t) = F_s A[u(t)] + F_b$

 F_b

$$F(t) = F_s A[u(t)] + F_l + \sum_{s} F_{cs,i} + \sum_{s} F_{cl,i} + \sum_{s} F_{b,i}$$

Simplest form.

Single lens model.

$$F(t) = F_s A[u(t;t_0,t_E,u_0)] + F_b$$

- Five parameters.
 - $-t_0, t_E, u_0, F_S, F_B$
- Note that the flux depends:
 - Linearly on $F_{\rm S},\ F_{\rm B}$
 - Non-linearly on t_0 , $t_{\rm E}$, u_0
- There are four basic observables:
 - Baseline flux = $F_{\rm S}$ + $F_{\rm B}$
 - Peak Flux.
 - $\overline{}$ Time of peak flux = t_0
 - Duration (i.e., full width half maximum)

Blended Light Curves.

- $f = F_S / (F_S + F_B) = 1.0$
- f = 0.8
- f = 0.6
- f = 0.4
- f = 0.2
- f = 0.1

Derivatives.

Degeneracies - General.

- Five parameters.
 - $-t_0, t_E, u_0, F_S, F_B$
- Four basic observables:
 - Baseline flux, Peak Flux, Time of peak flux, FWHM

$$\frac{F(t)}{F_s + F_b} = fA[u(t; t_0, t_E, u_0)] + (1 - f)$$

- Four parameters:
 - $-t_0, t_E, u_0, f$
- Three observables:
 - Peak Flux, Time of peak flux, FWHM

Degeneracies - Low Mag.

• In the limit of $u_0 >> 1$, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx f[1 + 2u^{-4}] + (1 - f) = 1 + 2fu^{-4}$$

Observed flux is invariant under the substitution:

$$f' = fC^4$$
; $u'_0 = u_0C$; $t'_E = t_EC^{-1}$

Degeneracies - High Mag.

• In the limit of u << l, perfect degeneracy:

$$\frac{F(t)}{F_s + F_b} \approx f[1 + u^{-1}] + (1 - f) = 1 + fu^{-1})$$

Observed flux is invariant under the substitution:

$$f' = fC; \ u'_0 = u_0C; \ t'_E = t_EC^{-1}$$

Degeneracies - High Mag.

- Four parameters:
 - $-t_0, t_E, u_0, f$
- Three observables:
 - Peak Flux = $F_{\rm S}/u_0$
 - Time of peak flux = t_0
 - $-FWHM = 12^{-1/2} u_0 t_E$

Before peak.

 High magnification light curves appear very similar until just before peak.

Before peak.

- Degeneracy with t₀ for data pre-peak.
- Higher magnification fits generally occur later.

Fitting.

- Basic Problem.
- Data: F_k , σ_k , taken at times t_k
- Model: $F(t) = F_s A[u(t;t_0,t_E,u_0)] + F_b$
- Barameters: $\underline{q} = [t_0, t_E, u_0, F_s, F_b]$
- barameters: $L = \exp(-\chi^2/2)$ (Canssian errors) • Maut to maximize the likelihood and the
- Where:

$$\chi^2 = \sum_{k} \left(\frac{F_k - F(t_k)}{\sigma_k} \right)^2$$

(uncorrelated errors)

Linear Fits.

- F_S and F_B are linear parameters.
- Given a set of values of t_0 , t_E , u_0 [and so A(t)], can fit for F_S and F_B analytically.

Linear Fits.

Steps:

1. Form the covariance matrix:

$$c_{ij} = b_{ij}^{-1}, b_{ij} = \sum_{k} \frac{\partial F(t)}{\partial a_i} \Big|_{t=t_k} \frac{\partial F(t)}{\partial a_j} \Big|_{t=t_k} \sigma_k^{-2}$$

2. And the vector:

$$d_i = \sum_k F(t_k) \frac{\partial F(t)}{\partial a_i} \bigg|_{t=t_k} \sigma_k^{-2}$$

3. The parameters which minimize χ^2 are then:

$$a_{best,i} = \sum_{j} c_{ij} d_j$$

Mutliple Observatories and/or Filters.

- Generally, F_S and F_B will depend on the filter and observatory.
- Even assuming the same wavelength response, blend flux can change for different observatories.
- In reality, wavelength responses will vary.

$$F_{1}(t) = F_{s,1}A[u(t;t_{0},t_{E},u_{0})] + F_{b,2}$$

$$F_{2}(t) = F_{s,2}A[u(t;t_{0},t_{E},u_{0})] + F_{b,2}$$
...

- Total number of parameters = 3+2×N_o
- Incur no additional "expense" because they are linear.

Non-linear minimization.

- t_0 , t_E , u_0 are non-linearly related to F(t).
- The general problem of finding non-linear parameters which minimize χ^2 (the global "best-fit") is hard.
 - False (local) minima.
 - Poorly-behaved likelihood surfaces.
 - Strong continuous degeneracies.
 - Discrete degeneracies.
- Fortunately, the single-lens problem is not too problematic (for good sampling).

Methods.

- Grid searches.
 - Inefficient.
- Newton's Method.
- Markov Chain Monte Carlo.
 - Not really designed for minimization.
- Canned routines:
 - AMOEBA (Numerical Recipes)
 - MPFIT (IDL)
- Minimization can be made faster and more robust by stepping in parameters that are more directly related to the data.
 - For example, for high-magnification events: F_{max} , FWHM

Newton's Method.

- Find the root of a function f(x).
- Begin with a guess for the parameter x_0 .

• Evaluate:
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Iterate:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Can be extended to N dimensions.
- Basis of sfit program.

Hybrid Fitting.

- All fits to microlensing light curves involve a hybrid method:
 - 1. Start with a trial set of non-linear parameters, which specify the magnification versus time.
 - 2. Linearly fit the blend and source fluxes for that trial set.
 - 3. Evaluate χ^2 for that set of non-linear parameters.
 - 4. Minimize χ^2 .
- Note that the uncertainties evaluated based on this χ² are underestimated: do not account for the uncertainty in F_s, F_b at fixed magnification.

Complications.

- Correlated uncertainties.
- Poor sampling and incomplete coverage.
 - May require fixing parameters.
- Higher-order effects.
 - Parallax and xallarap.
 - Finite source.
- Most methods fail (miserably) for most binary lenses.

Summary.

- Simplest microlensing light curve is a function of 3+2×N_o parameters.
 - Three non-linear parameters t_0 , $t_{\rm E}$, u_0
 - $-2\times N_o$ linear parameters F_s , F_b for each observatory/filter combination.
- Four basic observables: t_E, u_O, F_s, F_b can be degenerate.

Linear parameters can be found analytically.