
Extracting Parameters from a Planetary Microlensing Event Without a Computer

1. If a background star (“source”) is lensed by a single star in the foreground
(“lens”), what are the image positions θI as a function of the source position
θS?

The only equation you need from GR is the formula for the Einstein bending angle

α =
4GM

bc2
,

where M is the mass of the lens and b is the impact parameter.
Let’s first consider the simplest case: the source is perfectly aligned with the lens in

the line of sight. The image of the source is a ring, called the Einstein ring (see Figure
1). What is the angular size of Einstein ring? Here DS and DL are orders of magnitude
larger than b, so we can safely use small angle approximation.

Using simple geometry, we get

θE =

√

4GM

c2

DS − DL

DSDL
=

√

κMπrel,

where constant κ = 4G/c2AU = 8.14 masM−1
� , M is in M� and relative lens-source

parallax πrel = AU(D−1

L − D−1

S ). If a background giant star located at the galactic
center is lensed by a foreground M-dwarf (M = 0.5M�) at 4kpc, what is the
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size of angular Einstein radius? Can the ring be resolved by Keck or TMT?
What is the projected physical Einstein radius at the lens distance?

Once the source is misaligned with the lens, as shown in the following figure, we
no longer have a ring-like image. Your task is to solve for the image positions. Again,
remember to use small angle approximation. [Hint: Show that θ2

I −θSθI −θ2
E = 0, where θI

is the angular separation between the images and lens, and the angular distance between
the source and the lens is θS .]

ch

ch

From the above diagram, the “physical distance” X from the source to its image is
given either by

X = α(DS − DL)
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or

X = (θI − θS)DS

Combining these with the formula for Einstein bending angle,

θ2
I − θSθI − θ2

E = 0

where

θ2
E ≡

4GM(DS − DL)

DLDSc2

is the Einstein radius we derived earlier. There are two solutions, so two images at

θI,± = y±θE; y± =
u ±

√
u2 + 4

2
; u ≡

θS

θE

Surface brightness is conserved in lensing, so the magnification equals the angular area
of the image divided by that of the source. The magnifications for the two images are:

A± =

∣

∣

∣

∣

y±
u

dy±

du

∣

∣

∣

∣

=
1

2

[

u2 + 2

u
√

u2 + 4
± 1

]

.

Thus the total magnification is

A =
u2 + 2

u
√

u2 + 4

When u is small, A ∼ 1/u. This is good enough for today’s eyeball modeling.

The following figure shows the relevant geometry and the corresponding light curve.
The light curve can be described by three parameters: time of the peak magnification t0,
impact parameter u0 and Einstein radius crossing time tE. If u0 is small, how would you
quickly estimate tE just by looking at the light curve? [Hint: Calulate the relation between
t1/2 and tE , where t1/2 is the time span at half peak magnification.]
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2. The next figure shows the light curve of OGLE-2005-BLG-390Lb, a planet
discovered by PLANET and OGLE collaborations in 2005. The planetary
signal occurs when the planet sits right on top of the (major) image outside
the Einstein ring. What is the projected distance between the planet and the
star in the units of Einstein radius?

ch
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3. What is the magnification of a uniform source of angular radius θ∗ = ρθE,
sitting right on top of the lens? What is the “excess magnification” due to a
lens in the limit that the source is much bigger than the Einstein ring? [Hint:
Surface brightness is conserved in lensing, so the magnification equals the angular area of
the image divided by that of the source.]

ch
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The source boundary will be imaged into two rings at y± = (u ±
√

u2 + 4)/2. So the
area of the image is π(y2

+ − y2
−). Explicitly,

A =
π(y2

+ − y2
−)

πρ2
=

√

1 +
4

ρ2

Clearly, if ρ >> 1, A → 1 + 2/ρ2, so the excess magnification is just 2/ρ2.

4. In this event, the angular size of the source is much smaller than the angular
Einstein radius of the lens star, but much larger than that of the planet. From
the light curve features, derive planet to star mass ratio q.

Step 1. The planet Einstein radius is θp =
√

4GmDLS/DLDSc2. Hence, the mass
ratio q is

q ≡
m

M
=

θ2
p

θ2
E

A good conjecture, which turns out to be correct, is that the excess magnification due to
the planet is

∆Ap = 2

(

θp

θ∗

)2

Step 2. What is the relationship between the duration of the planetary per-
turbation tp, the Einstein crossing time tE, the source size θ∗ and the Einstein
radius θE?

Clearly θE/tE and 2 θ∗/tp are both equal to the proper motion, so they are equal to
each other:

tp
tE

=
2θ∗
θE

Step 3. Estimate q in terms of observables.

q ≡
m

M
=

θ2
p

θ2
E

=
θ2

p

θ2
∗

θ2
∗

θ2
E

=
∆Ap

2

t2p
(2tE)2

Step 4. What would be the excess magnification caused by an Earth-mass
planet q = 10−5? What would that be if the angular source size is ten times
smaller?
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