

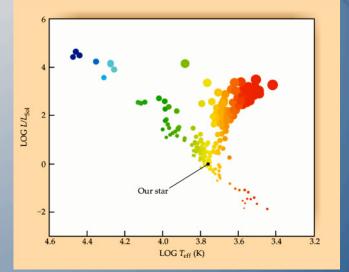
Sizing Up the Stars Diameters of A, F, and G Dwarfs with the CHARA Array

Tabetha Boyajian (GSU/CHARA), et al.

 Interferometric survey to measure the angular diameters of nearby, main-sequence, A, F, and G type stars

* 'Normal', single stars: distance <15 pc (G stars) up to ~30pc (A stars)

 $\times N\sim 50$, average $\sigma\theta\sim 1.4\%$


 $_{\ensuremath{\varkappa}}$ See also K. von Braun POP for K-M dwarfs and exoplanet host stars

*** FUNDAMENTAL ASTRONOMY**

 $\raskip {\tt K}$ Empirically determined values of radius, bolometric flux, and effective temperature

GOALS

- ★Yes, we can now plot a **REAL** H-R diagram (shown on right)
- χ Calibrate the effective temperature scale of MS stars
- ✗ Fitting isochrones to these quantities constrain masses and ages of these stars

What we have learned

- Less direct methods tend to overestimate T_{eff} and underestimate radii
 - \approx No correlation with metallicity or color index
- Isochrone ages and masses found with our T_{eff} and L
 - **☆**Results agree exceptionally with eclipsing binaries
 - Spectroscopic log g used in combination with interferometrically measured radii lead to over predicted masses!
 - * Likely cause is the temperature offset (i.e. hotter T_{eff} , younger age, smaller radii and higher log g)
- Empirically derived color-temperature-metallicity relation
 - \approx Temperature scale accurate to <100 K
 - Solution for metal poor stars is ~200 K cooler than any other relation!