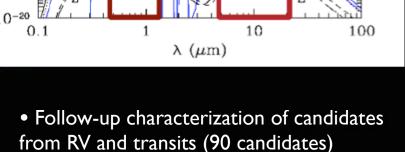


Big-picture

Past and Present: HST, Spitzer, Kepler, Ground-based The Next Decade: Ground-based, Kepler, JWST, TPF-Darwin What has been done: physical properties, atmospheres of hot Jupiters What can be done: Atmospheres of transiting super-Earths (JWST) What cannot be done ?

The Question to ask:

What will humanity look forward to in 10 years ?


For detection HZ (SNR~5):

- M stars, 32 hours, 26 targets, = 35 days total integration
- K stars, 64 hours, 25 targets, = 67 days total integration
- G stars, 128 hours, 38 targets, = 203 days total integration

 \sim 300 days of integration needed for detection phase, assume 50% integration time = 600 days total for detection phase

For characterization H20 (SNR~10)

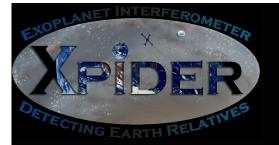
- M stars, 2.5 days integration
- K stars, 25 days integration
- G stars, 250 days integration

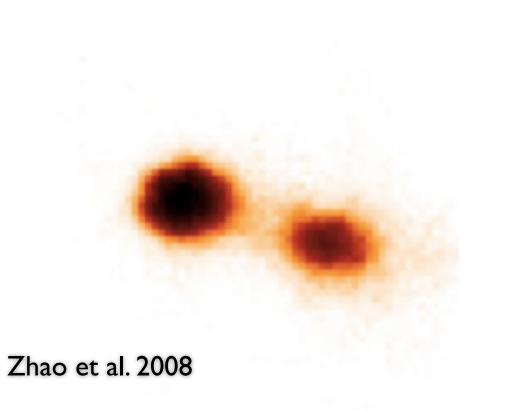
• M,G,K stars within 17 pc

 0^{-19}

• Bio signatures: H2O, CO2, CH4, O3

Primary Science Matrix


Science Objectives	Measurement Objectives	Measurement Requirements	Instruments	Mission Requirements
Detection and characterization of Habitable planets	 Direct imaging Mid-IR Spectroscopy Detection 	 Nulling interferometry 10 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes 500 m base line mid-IR spectrograph 	 Pointing stability Thermal stability Multi-year time span
Comparative exoplanetary science	 Direct imaging of multiple-planet systems Direct imaging of range of planets 	 Nulling interferometry 10 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes Variable base line mid-IR spectrograph 	 Pointing stability Thermal stability Multi-year time span
Study of formation and evolution of planetary systems	 Direct imaging of debris disks Direct imaging of young stars 	 Imaging interferometry 10 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes Variable base line mid-IR spectrograph 	 Pointing stability Thermal stability
Microlensing	 Gravitational lensing images post-event follow-up 	 Imaging interferometry 10 mas ang res 	 4 x 1m telescopes Variable base line 	 Pointing stability Thermal stability


Additional Science Matrix

Science Objectives	Measurement Objectives	Measurement Requirements	Instruments	Mission Requirements	
Direct Imaging of circumstellar disks	 Direct imaging Mid-IR Spectroscopy Density and T profiles 	 Interferometry I0 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes 500 m base line mid-IR spectrograph 	Pointing stabilityThermal stability	
Interacting Binaries	 Roche Lobe imaging Orbits, mass-transfer Interacting magnetic fiellds 	 Interferometry I0 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes 500 m base line mid-IR spectrograph 	Pointing stabilityThermal stability	
Star spots	 Interferometric imaging of stellar surfaces Differential T measurements 	 Interferometry 10 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes 500 m base line mid-IR spectrograph 	Pointing stabilityThermal stability	
AGNs	• Direct imaging of dusty torus	 Interferometry 10 mas ang res 6-20 micron spectroscopy 	 4 x Im telescopes 500 m base line mid-IR spectrograph 	Pointing stabilityThermal stability	

Guest Observer Programs

Imaging Roche Lobes

Telescope and Instruments

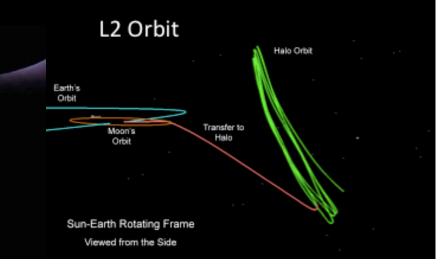
Telescope : 4 x Im aperture in formation flight Instruments : Long baseline interferometer + mid-IR spectrometer Baseline : 500 m Wavelength :


- Imaging 10 micron
- Spectroscopy: 6 20 micron

Resolution :

- Angular 2 mas
- Spectral 25
- Sensitivity: 4.8 microJy, 10 microns, 15 hours

Duration :


- Mission life-time 5 years
- Extendable life-time 3 years

L2 Orbit

- Requirement of low thermal background : L2
- Requirement of better communication bandwidth for control of formation flight

Data volume and rate

- Data volume requirements : 5 kbps x 25 (easy to meet requirements)
- Standard telecom hardware (X-band, for L2)

Pointing requirements

- Requirement: I arc sec
- I arc sec accuracy in attitude control of the spacecraft is available from standard star-trackers
- Delay lines allow finer control
- Minimizes costs on star-trackers

Spacecraft Buses

• Need 5 spacecraft on a single Launch vehicle: 4 x 1m + beam combiner.

- Each spacecraft = \$ 250M (Custom made bus) x 5 = \$ 1250M
- Mass: 5 x 300kg = 1500 kg

Launch Mass

26 % margin on launch mass

SYSTEMS WORKSHEET:	FY08Q2 Templates Spacecraft				
	Mass Fraction	<u>Mass</u> (kg)	Subsys Cont. <u>%</u>	CBE+ <u>Cont.</u> (kg)	Mode 1 <u>Power</u> (W) Launch
Power Mode Duration (hours)					
Payload on this Element	26%	600.0	35%	810.0	0
Instrument 2	5%	120.0	43%	171.6	
Instrument 3	1%	20.0	43%	28.6	
Instrument 4	2%	40.0	43%	57.2	
Instrument 5	2% 0%	10.0	43%	0.0	
Instrument 6	0%		43%	0.0	
Instrument 7	0%		43%	0.0	
Payload Total	34%	780.0	37%	1067.4	0
Spacecraft Bus Spacecraft	65%	1500.0	do not edit for 30%	mulas below this 1950.0	line, use the c
S/C-Side Adapter	05% 1%	25.0	<u> </u>	26.3	
Bus Total	170	1525.0	30%	1976.3	
Thermally Controlled Mass		1020.0	0070	1976.3	
Spacecraft Total (Dry)		2305.0	32%	3043.7	0
Subsystem Heritage Contingency		738.7	32%	32%	
System Contingency Spacecraft with Contingency		252.5 3296	11% of total	11% w/o oddi pid	0
Propellant & Pressurant1	7%	250.0		w/o addl pld	U
Spacecraft Total (Wet)	770	3546			
L/V-Side Adapter		100.0			
Launch Mass		3646			
Launch Vehicle Capability		3495		_	
Launch Vehicle Margin		-151.2			
JPL Design Principles Margin		26%	30% ו	reauired	

Major Risks

Novel mission type: Lack of precursor missions

- Formation flight not demonstrated at this level
 - Navigation
 - Propulsion
- Challenges in interferometry
 - laser metrology
 - Iong term performance of nulling
- Cooling : Need to design details, but Spitzer is proof in action

Total Mission Cost

COST SUMMARY (FY2009 \$M)

WBS Elements	Total	
Project Cost (\$ FY09)	\$2948.3 M	
Development Cost (Phases A - D)	¢2630.9 W	
01.0 Project Management	\$101.5 M	5% of d
02.0 Project Systems Engineering	\$101.5 M	5% of d
03.0 Mission Assurance	\$81.2 M	4% of d
04.0 Science	\$30.0 M	
05.0 Payload System	\$310.0 M	
Instrument 1 (4 x 1m telescopes)	\$200.0 M	
Instrument 2 (Interferometer)	\$70.0 M	
Instrument 3 (Laser telemetry)	\$20.0 M	
Instrument 4 (Spectrometer)	\$20.0 M	
Instrument 5		
06.0 Flight System	\$1250.0 M	
07.0 Mission Operations Preparation	\$15.0 M	\$15M
09.0 Ground Data Systems	\$15.0 M	\$15M
10.0 ATLO	\$109.2 M	7% of P
11.0 Education and Public Outreach	\$10.2 M	0.5% of
12.0 Mission and Navigation Design	\$7.0 M	\$7M
Development Reserves	\$609.2 M	3
Operations Cost (Phases E - F)	\$172.5 M	
Operations	\$150.0 M	\$30M/yı
Operations Reserves	\$22.5 M	1
8.0 Launch Vehicle (L/V B)	\$136.0 M	

development development development

Payload and Fligh of development 30%

5

r 5%

This is what humanity will look forward to in 10 years.

Team Xpider

- Nikku Madhusudhan
- Yamina Touhami
- + Jessie Christiansen
- David Bernat
- Andrew Fittingoff
- Krista Soderlund
- Padma Yanamandra-Fisher

Scientific Advisors

- + Rachel Akeson
- Keith Wafield