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Current and Future Observational Opportunities and Challenges:

Ground: IRTF, Keck, ELT, TMT

2009 Sagan Exoplanet Summer workshop
Dr. P. Deroo



Ground versus space:
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Instrument e
+

Earth Atmosphere

major space 3 3 —w¢ X

observatories
Compton Integral Chandra Spitzer WMAP

gamma ray Xray ultraviolet visjble infrared
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10 km
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* Limits wavelength range:

optical — near-IR

* Variable absorption
and emission

* Introduces
wave front phase errors
and scintillation

0.2

Percent

Earth atmosphere:

Atmospheric Absorption Bands
1 10 70

E A A
?;" Carbon Dioxide
o R .
o
£ i N N A Oxygen and Ozone
o
g A th Methane
.% N l I " Nitrous Oxide
2 . .

k Rayleigh Scattering

0.2 1 10 20
Wavelength (um)
Optical  ~ extinction roughly smooth function

IR ~ NOT smooth function
Extinction ~ airmass

Earth atmosphere influence is irregular and impossible to estimate a priori at
the level of extra-solar planet sensitivity (but see also predictive AO).

2009 Sagan Exoplanet Summer Workshop
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* Limits wavelength range:

optical — near-IR

* Variable absorption
and emission

* Introduces
wave front phase errors
and scintillation

Earth atmosphere:

Turbulent 0
- )
e =R g~
h
Telescope
D

Speckle

Focal plane

* Scintillation
* Wandering of the PSF
* Speckles

wandering wandering

D=2m D=8m

Earth atmosphere influence is irregular and impossible to estimate a priori at
the level of extra-solar planet sensitivity (but see also predictive AO).



@ But also:

weeeees The |ife of @ photon in the telescope

Jet Propulsion Laboratory
California Institute of Technology

Turbulent Mirror
atmosp}lere seeing
o .

Alignment

| T
/ /

I

/ / /‘
ﬁq/@ Guiding
___ errors
w

Surface — %@\b Efficiency of :\®
errors = ‘reflective
treatment Philip Diericks

Ground based challenge: Correct for the Earth atmosphere and
tackle the same problems as for space based observations

2009 Sagan Exoplanet Summer Workshop
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Science case:
— Optical:
* Timing, radius, ...
* Presence of Hazes
e Atomic absorptions

— Near- Infrared:
* Molecules! H,0, CH,, CO, CO,
* Temp-Pressure profile

* primary and secondary eclipse:
localized knowledge!

AND ground based observations make
exoplanet characterization accessible
to the general community/public

2009 Sagan Exoplanet Summer Workshop

Eclipse spectro-photometry

1000

o

1000 /A

Height in planet atmosphere [km]

=]
o
5]

! —~—

Synthetic

-3000

H20

H20+CH4

H20+CH4+C02)

Vg

)

Pont et al. 2008

Swain et al. 2009
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Primary eclipse

Optical & IR

Winn et al. 2007

Eclipse spectro-photometry

4 (secondary eclipsea)

Fluce

3 1.00
I

0.99
S 098
5 0.97

1011 UT 2006-08-21, MAGNUM 2m V, rms = 0.0030
fokh aom e e e ettt

TTr T 17T

0.75

Swain et al. 2008

2.50

0.80 0.85
HJD - 2453968

0.90

+ Binned model, water + methane

Binned model, water + methane + ammonia
+ Binned model, water + methane + CO
A Observations

N
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o

Absorption (%)
N
S
S

235

Model, water
Model, water + methane

2.30

L
20
Wavelength (um)

I I
1.6 1.8

2009 Sagan Exoplanet Summer Workshop

I
22

I
2.4

transit

sacondary eclipse

1%

Tinme ————————-

Correct the Earth

0.1%

atmosphere + instrument

0.02 %

effects to this level
(optimistic)

0.02 %

relative flux

1.010]
1.005
1.000

0.995 -

0.990L

Flux Planet / Flux Star (1073)

Secondary eclipse

Infrared

Charbonneau et al. 2005
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Swain et al. 2009
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Transit photometry

Biggest success from the ground

R M

planet’

planet’

Rossiter-McLaughlin, clues to interior

structure and astmospheric energy balance, timing can
be used to detect presence of moons, mean stellar
density, ... (see e.g. “The transit light curve project;

Winn et al.)

Instantaneous calibration
of the Earth atmosphere

1.005
1.000 -~

0.995

Normalized flux

0.990

0.985

4.17
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4.14
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Radial velocity (km/s)
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. e #f'«-_e" =
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2 2T 3] 0.995
Y * = :
5 ]
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] =
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Telescope ~ 35 cm
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) .2
.
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_ 0.980te
..
°® ¢ ° o Do oCe o
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Moutou et al. 2009

See talk by M. Lopez-Morales

0. 0.5 0.6
HJD (days since 2454876.0)

Fossey et al. 2009



Occultation photometry
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Transit photometry: 1E-2 > Secondary eclipse: 1E-3

Snellen & Covino et al. 2007

* Successful detection of two very hot planets oo

" = o + ")
— K-band: ook Depth =0.17 % + 0.05 %

1 % = typical photometric reliability i ¢ fb
. . . 0,000~ % % I % b B
using standard techniques while r % p 117 L 7 41
the photon noise < 1d-3 3 % 8

-0.008
0.05 % (Snellen & Covino 2007) by avoiding [

=0.010L

systematic effects (random jitter offsets, PP Ry T T R ————

short exposure time) Phase
Sing et al. 2009

— Z-band: 0.3F
Relative photometry; :
detrending based on
position, seeing, airmass
Scatter close to
the Poison limit

Differential Flux (%)

lllIlllllllllIlllllllllllllIlllllllllllllll

0.40 0.45 0.50 0.55 0.60 0.65
Phase

Depth =0.0363% + 0.0091 %
2009 Sagan Exoplanet Summer Workshop 9



pectroscop
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Transit photometry: 1E-2 Spectroscopy: 2E-4

And: a slit
Flux ~ seeing

Relative photometry?

* Spectral differential
, * Relative spectro-photometry
strategies: * New calibration algorithms

e Improved instrumentation

Enhanced post-

Observing/calibration
observing analysis
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Detection of Na D line from the ground

Echelle spectrograph on 8 m
in 3 A band ~ few times 104

However: Upper limits of 1% - 0.1%
linked to instrument and Earth
atmospheric effects

— Bundy & Marcy 2000: Keck — HIRES
— Moutou et al. 2001: UVES - VLT

— Winn et al. 2004: Subaru - HDS

— Narita et al. 2005: Subaru — HDS

difference of relative fluxes

Spectral differential spectroscopy

Signal ~ 2d-4 — 1d-3

2" & 3" contact |, L1 & 4" contact
0.002 Tt s e e e e s

0.001 e, SRR . n
bl R s e b e . $ ]
& .

0.000

. . N .o
- . + PRI : N 3 4
>0 : . .
. T St . : ’ .
-0.001— . by S . i B —
. : . .
r ‘. . . L 3 . . 1

=0.002 |t

0.0004 — E

s @

o

-0.0004 |— { : : —
r. . .. L ¢y oy 1

|
0.0 0.0p 0.04 0.06 0.08 0.10 0.12
time from center of transit (days

har o)nneau et al. 2002

v v
Ground: different airmass, telluric,
night, instable instrument
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Spectral differentia

* Success by enhanced calibration of the
instrument and atmospheric effects:

equivalent width of Na D lines is not sensitive
variations in seeing and variations of the
spectral lines due to Rossiter-McLauglin effect

Characterization of non-linearity of the CCD

e Success by measuring 11 different transits
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Redfield et al. 2008; HD 189733b; 9.2 m HET

Relative Flux - 1

Relative Flux - 1

spectroscopy
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Snellen et al. 2008; HD 209458b; Subaru



@ Relative spectro-photometry
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* Relative spectroscopy between simultaneously acquired spectra

Variations: | Two stars in the slit Ig
* 10-20% correlated with A change ~: G
« factor 2-3: moving in-out of slit _ 4- ,uﬂ | N’ (‘M{ﬁh P
. . . L. < £ If . | o

* non-linearity variations 23 ,,erd \W;l | =
é g\ ‘ J A | 1y ‘Nw.r W Comparison S

] o 2H ',JJU \ .\M' "M p S

->0.15 % detection sensitivity TR w
| U SRS S s 0 t

3.0 3.2 3.4 3.6 3.8 4.0 4.2 S

Wavelength (microns) 5

e MOS technology: possible breakthrough
Late 2010

% mos Spring 2010 \M

VLT ‘ Gemini

now

Keck



“Standard” eclipse spectroscopy
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0.0010[ 7 P e
Out-of-Eclipse Minus In-Eclipse

Strong limits have been set on transmission
and emission spectra:

Contrast

— Calibration of the instrument is being
challenged : Previously unknown instrument ,
effects are almost always encountered S rrsversr ey e e e

Wavelength (microns)

— Optimum observing strategies depend strongly
on prior knowledge of instrument
behavior; re-observing is often necessary

Wavelength (microns)
2.300 2.305 2.310
o reoser e IR e
— Telluric variability is a severely limiting o 1L | |
factor; the task is to probe molecules present 200 1L | |
. \
|
7

in both the Earth and exoplanet atmosphere 100 |

— Accurate error analysis is of the utmost

importance to establish limits .

Spectrum number

200

100

K A

Deming et al. 2005
2009 Sagan Exoplanet Summer Workshop 14
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Other methods explored
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* Integral field spectroscopy: no slit, larger duty cycle,
instantaneous notion of the earth atmosphere

* Extreme spectral resolution allows to disentangle lines
coming only from the exoplanet (CRIRES, ELT/TMT)

* Doppler shift in emission of exoplanets (NIRSPEC/Keck)
 Forward modeling of the Earth-atmosphere effect Spatial in X

06

05 F h - /
o5 Mars

400 500 6C0 700 800 :
Surface Pressure (Pa)
Chamberlain, Bailey & Crisp, 2006

o
S
1

CQ, Index
4
b

Model

o
w
4




Conclusions
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* Exoplanet spectro-photometry from the ground is possible!
* Transits are measured routinely
» Differential spectroscopy in the optical is demonstrated
* Secondary eclipses have been measured
* Near-IR spectroscopy is reaching the required accuracy

* Ground based eclipse measurements require non-standard
calibrations

* Systematics in instrument and Earth atmosphere effects dominate (the
photon noise is not always relevant!)

* The instrument is never understood at the required level
e Multiple tries on the same instrument are often necessary
 The deployment of MOS, IFU, larger telescopes could make
Exoplanet spectroscopy service mode observing (©)



