All Sky Transit Observer C. Beichman CoRoT-2b, a 3 M_{Jup} planet orbiting a KO star. ASTrO will monitor over 2 million of the brightest stars in the 2MASS The 1882 Transit Survey of Venus

Planet Census

349 Planets To Date

- Timing (1992)
 - 4 systems
 - 7planets
 - 2 multiple
- Radial Vel. (1995)
 - 275 systems
 - 323 planets
 - 33 multiple
- Transit (1999)
 - 59 planets
- Microlensing (2004)
 - 8 planets
 - 1 multiple
- Imaging (2004)
 - 9 systems
 - 11 planets

- Astrometry (2009)
 - 1 planet

Transit Basics

- Primary transit
 - Planet in front of star
 - $Fp/F*=(Rp/R*)^2=1%$
 - Jupiter/G star
 - Earth/late M star
 - Fp/F*=0.01%
 - Earth/G star
 - Transmission spectrum
- 0.5-10% prob. alignment
- Duration 2-10 hrs
- RV yields mass → density
- Secondary transit
 - Planet behind star
 - IR yields temperature
 - Fp/F*=(Rp/R*)² Bp(Tp)/ B*(T*)~0.1%
 - Emission spectrum
 - Visible yields albedo
 - $Fp/F^* = (Rp/R^*)^2 Ap \sim 0.1\%$

How Do we Find Transits?

- Follow-up RV detections (1-10% alignment)
- Transit surveys
 - 10%-0.5% alignment (<0.1 to 1 AU)
 - 1%-10% incidence of gas giant planets (<0.1 to 3 AU)
 - →10⁻³ probability →at least 10⁴ stars for 10 gas giants
- Ground-based surveys at 3,000-5,000 micromag over thousands of sq. deg.
- Space-based surveys at 20-50 micro-mag over 10s sq. deg (CoRoT) to 100 sq. deg (Kepler)
 - Kepler will monitor 150,000 stars for 4 years

Why Transits?

- Orbit inclination
- Orbital separation
- Star/Planet spin-orbit
- Stellar limb darkening
- Stellar mass/density
- Planetary radius
- Timing for other planets
- Rings/moons
- Reflected light (albedo)
- Composition (Vis & IR)
- Vertical structure
- Global Circulation
- Transit + RV
 - Planet mass/radius bulk density & composition
 - theory of formation and evolution

Mapping Weather on HD189733

- 920 K on the dark side to 1200 K on the sunlit side.
- Temperature variation is mild → Winds spread heat

JWST Observations of Transits

JWST Follow-up Observations of Super Earth Transits

From Deming et al (2009):

- JWST/NIRSpec observations of water absorption in a habitable super-Earth (T = 302K and R = $1.8R_{\oplus}$) orbiting an M star at 20 pc
- JWST/MIRI secondary eclipse photometry at 15 μ m for a warm (T = 500K) exo-Neptune (R = 4R_{\oplus}) orbiting at 0.2 AU from a K2V star.

What Is In The Future for Transits

- Kepler and CoRoT discoveries of hundreds of planets, from hot Jupiters to cool Earths
 - Detailed follow-up difficult since stars faint (V= 13 mag)
- Follow-up observations of bright planets
 - HST spectroscopy (on-going)
 - JWST spectroscopy (on-going)
- Surveys of brighter stars
 - PLATO (few 1000 sq. deg at V=10-12 mag) --- ESA study
 - TESS (few million stars, whole sky, visible) --- NASA study
 - ASTrO (few million stars, whole sky, near-IR) --- NASA study

Yield From All Sky Surveys From Space: TESS or ASTrO

Planets Detected In Monte Carlo Simulation		
Single Transit SNR	Gas/Icy	Rocky
Low (10>SNR>3)	178	520
Medium (50>SNR>10)	695	22
High (SNR>50)	577	0
Total	1450	542
*2×10 ⁶ stars in unconfused 60% of sky; Final		

SNR>7; # Transits/star> 3

Yield By Spectral Type

Distance To Closest Transits

Planets Around M stars in Near IR

- Ratio of # of stars detectable in a near IR (0.65-1.65 μ m) vs. deep red (0.55-1.0 μ m) as a function of effective stellar temperature. Near-IR survey finds 3-5 times more M star planets than visible light survey.
- M star planet in few day orbits are in Habitable Zone

Concept Overview

All Sky Transit Observer (ASTrO) is a near-infrared sky survey designed to monitor the brightest, closest stars for transiting planets with a focus on late type stars, with a goal of improving our understanding of the formation and evolution of planets and planetary systems

Key Measurements

- Monitor the entire sky with continuous viewing periods of at least 60 days three times over a 3-year mission
 - Observe in the near-IR $[J_w = 0.65-1.65 \mu m]$ where late type stars are brightest
 - Observe with a precision of <100 μ mag in 1 hr for a star with $J_w = 9$ mag

Mission Description

- Twenty four individual cameras with 0.1 m apertures, 0.65-1.65 μm
- HgCdTe 2k×2k arrays, 4 arrays per camera (4k×4k arrays possible alternative)
- Flight system inserted into L2 Orbit, injected mass is suitable for shared Delta IV launch vehicle or smaller LV
- 3-yr lifetime with 5 year goal (consumables sized for 5 years)
- Mission OPS implements Kepler-like concept

Questions for Investigation

- What orbit Is favorable
 - Stable all-sky viewing vs. cost of getting there
- What instrumentation is required
 - SNR over relevant integration time → aperture
 - Continuous obs vs. rpt'd snapshots → # cameras
 - Sky coverage →# cameras, FOV
 - Stellar type → near-IR vs. visible
- What spacecraft parameters
 - Data rates
 - Pointing