Sagan Summer Workshop Mission Group Project: Designing a Mission

Kolth Warfilald
Lead Concurrent Englineer - Team X

reani What Are the Pieces of the Puzzle

(What do I want to do (Science Goals)?
What Am I Going to do (Instrument + Telescope)?
(Where Am I Going (Orbit)?
(What do I put everything on (Spacecraft)?

- Slewing? Pointing? Data? Vibration? Power?

How do I get there (Launch Vehicle)?

- Where are you going? How much mass?

How much will it all cost?
(How soon can I have it?

What Are My Goals

(Science matrix ties science goals to mission design requirements
(Objectives are set by NASA Astrophysics roadmap

- Science teams measurement objectives and translate those objectives into measurement requirements, instruments and mission requirements

Science Objectives	Measurement Objectives	Measurement Requirements	Instruments	Mission Requirements
Determine how planets form in dense disks of gas and dust around young stars				
Study the formation andevolution of planetary systems				
Explore the diversity of other worlds				
Search for habitable planets and life				

(Astronomy missions are usually driven by the instrument and science requirements on the spacecraft
(Instrument design is done separately from the total mission design due to the complexity of the instrument design process

How Much Is That Telescope?

		Mass	Power	Data rate	Technology Development	Cost
		(kg)	(W)	(kbps)		(\$ FY09)
	Lyot Coronagraph	150	50	70		\$ 70 M
	PIAA Coronagraph	170	65	70	Optics	\$ 90 M
	Photometer	120	75	300		\$ 60 M
	Interferometer	120	250	5		\$ 70 M
	50k x 50k FPA Wide Field Survey Camera	350	200	400000	FPA's	\$ 300 M
	2k $\times 2 \mathrm{k}$ camera	10	10	600		\$ 20 M
	Vis Spectrometer	40	30	3000		\$ 30 M
	IR Spectrometer	40	30	3000		\$ 20 M
	UV Spectrometer	40	30	3000		\$ 40 M

$$	0.5 m Telescope	30	25	n/a		\$ 20 M
	1.0m Telescope	150	75	n/a		\$ 50 M
	1.5m Telescope	300	225	n/a		\$ 150 M
	2.0m Telescope	700	300	n/a		\$ 500 M
	4.0m Telescope	2000	400	n/a	Large optics, I \& T	\$ 1500 M

Telescope Adjustments:

1. Add 50% to cost for off axis
2. Add 30% to cost for UV
3. Subtract 30\% from cost for IR only
4.Add 50\% for passive cooling (45 K)
5.Add 50\% for active (He) cooling (4 K)

Instrument Adjustments

1. Cryocooler or dewar add $\$ 50 \mathrm{M}$

(Key Trades

- Information System
- Power
- Propellant/Structure/Mass
- Pointing
- Cost

Pointing Trades

(Pointing control - the ability to point the instrument payload at a specific target within a given accuracy.
(Pointing knowledge - the after-the-fact reconstruction of the true instrument position within a given accuracy.
(Pointing stability - holding a position within a tolerance for a fixed period of time (integration time).
(Slew rate - Slewing can be a significant period of the total mission life. Reaction wheels must be large enough to achieve the required rate.

	Pointing Control	Stability
HST	0.01 asec	$0.007 \mathrm{asec} / 24$ hours
Spitzer	0.5 asec	$0.1 \mathrm{asec} / 200 \mathrm{sec}$
WISE	60 asec	$1 \mathrm{asec} / 9 \mathrm{sec}$

Where Is My Data?

(Daily data volume

- Instrument data rate x operation/day
- Size of array, number of arrays, integration time, etc.
(Assume x2 lossless compression, 4 bytes=32 bits/pixel. Add 10\% overhead
(Link time is expensive. Ka band is expensive.
(Taking data while observing requires (expensive) steerable antenna
- Spitzer downlinks (once/1 day for 2 hours) and Kepler (once / 2-4 days)

	Low Earth Orbit	L2	Earth Trailing
Telecom rate Mbits/sec	$320,000(X$ band)	$300(\mathrm{X})$ $320,000(\mathrm{Ka})$	$3 / \mathrm{yr}^{\wedge} 2(\mathrm{X})$
$3200 / \mathrm{yr}$ ^2 (Ka)			

What Is a Spacecraft?

		Spacecraft A	Spacecraft B	Spacecraft C	Spacecraft D
Payload Power	W (EOL)	50	66	730	650
Payload Mass Limit	kg	70	200	380	650
Bus Dry mass (w/o Payload)	kg	60	125	600	350
Science Data Downlink capacity	kbps	2000	2500	320000	80,000
Science Data Storage capability	Mbit	3	2000	134000	100,000
Pointing Knowledge	arcsec	2880	3	3	0.5
Pointing Control	arcsec	2160	32	5	16
Pointing Stability (Jitter)	arcsec/sec	36	0.1	0.05	0.1
Slewrate	deg/min	60	390	240	120
Mission Design Life	yrs	1	2	5	5
Cost	$\$$ FY09	$\$ 50 \mathrm{M}$	$\$ 75 \mathrm{M}$	$\$ 125 \mathrm{M}$	$\$ 150 \mathrm{M}$

Orbit Selection

(Trading telecom needs vs. station keeping requirements vs. launch vehicle costs vs. eclipse and downlink opportunity issues vs. mission duration
(Trades usually require complete design of the spacecraft and mission to evaluate
(All subsystems can be impacted by the decision
(Spacecraft design and launch vehicle selection are similar for L2 and Earth trailing

Where Is My Spacecraft?

	Low Earth Orbit (Eq)	Low Earth Orbit (Polar)	L2	Earth Trailing
Launch Vehicle	Inexpensive	Modest	Expensive	Expensive
Thermal	Complex, hot Earth, eclipses	Stable hot Earth	Stable, cold	Stable, cold
View of Sky	Earth and Moon avoidance	Good along terminator or anti-sun	Excellent. Constant geometry	Excellent. Constant geometry
Data Rates	Easy, high	Easy, high	Moderate	Expensive with time
Propulsion	De-orbit	De-orbit	L2 Entry, station keeping	None

	600 km Polar Orbit	L2	Earth Trailing	Cost
L/V A	800 kg	N/A	N/A	$\$ 57 \mathrm{M}$
L/V B	$6,800 \mathrm{~kg}$	$3,495 \mathrm{~kg}$	$3,485 \mathrm{~kg}$	$\$ 136 \mathrm{M}$
L/V C	$20,790 \mathrm{~kg}$	$9,410 \mathrm{~kg}$	$9,395 \mathrm{~kg}$	$\$ 220 \mathrm{M}$

How Expensive Will It All Be?

COST SUMMARY (FY2009 \$ M)	
WBS Elements	Total
Project Cost (\$ FY09)	\$514.1 M
Development Cost (Phases A - D)	\$396.8 M
01.0 Project Management	\$15.3 M
02.0 Project Systems Engineering	\$15.3 M
03.0 Mission Assurance	\$12.2 M
04.0 Science	\$10.0 M
05.0 Payload System	\$100.0 M
Instrument 1	\$100.0 M
Instrument 2	
Instrument 3	
Instrument 4	
Instrument 5	
06.0 Flight System	\$100.0 M
07.0 Mission Operations Preparation	\$15.0 M
09.0 Ground Data Systems	\$15.0 M
10.0 ATLO	\$14.0 M
11.0 Education and Public Outreach	\$1.5 M
12.0 Mission and Navigation Design	\$7.0 M
Development Reserves	\$91.6 M
Operations Cost (Phases E-F)	\$17.3 M
Operations	\$15.0 M
Operations Reserves	\$2.3 M
8.0 Launch Vehicle	\$100.0 M

```
5% of development
5% of development
4% of development
$15M
$15M
7% of Payload and Flight System
0.5% of development
$7M
    30%
$15M/yr years
    15%
```

Class	Total Cost Limit	Comments
Small Explorer	$\$ 105 \mathrm{M}$	Highly focused. Single instrument. No technology. No risk. NuStar, Galex. 2-3/decade
Medium Explorer	$\$ 300 \mathrm{M}$	Highly focused, Single instrument. No technology. No risk. WISE
Discovery Class	$\$ 500 \mathrm{M}$	Kepler. Not available to astronomy
ExoPlanet	$\$ 650-800$	Sophisticated instrument. Broad appeal. GO program. Modest technology? 1-2/decade?
Probe	M	$\$ 1,000-2,0$
Spitzer, Chandra. Sophisticated instrument(s). Broad Mapper Observatory	Strong GO/GTO. 1/decade	
Mega Flagship	$>\$ 5,000 \mathrm{M}$	HST, JWST. 1/generation. Numerous complex instruments. Very high technology risk. Should
feed many astronomers through GO programs		

Design iteration and convergence

Outline

1. Science goals, mission name (bonus for acronym and logo!!)
2. Define telescope and instrument
3. Choose orbit
4. Calculate data volume, rate and downlink
5. Calculate pointing requirements
6. Select spacecraft bus
7. Determine launch mass
8. Select launch vehicle
9. Describe major risks
10. Estimate total mission cost

1. Science goals

(Major science goals and relevance to field
(Mission name (and acronym/logo)

reand 2. Define telescope and instrument

(Wavelength
(Size
) Sensitivity
(Resolution (spectral and angular)
(Thermal Requirements
. Duration
. Consider data rate, background noise, launch cost

renve 4. Calculate data volume and rate

(Calculate data volume and rate
Is this consistent with orbit and downlink capabilities?

reany 5. Calculate pointing requirements

* Use the least stringent pointing needed to accomplish the science
(Depends on size of instrument, telecom capability, pointing capability
(Telescope
. Bus
(Instrument
- Propellant
(Margin
(Mass
(Orbit
(Cost
. Unusual size
(New technologies
(Below guideline margins
(Telescope
) Bus
(Instrument
. Launch vehicle
M Operations
(Reserves

