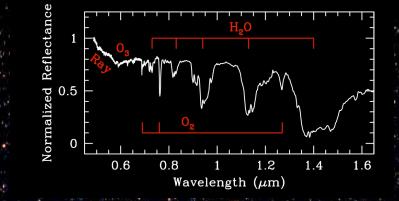
Radiative Transfer and Molecular Lines Sagan Workshop 2009



Sara Seager

Lecture Contents

- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
- Thermal Inversions
- Molecular Line Primer

Planet Atmosphere Equations

$$\frac{dI(s, \nu, \mu, t)}{ds} = \varepsilon(s, \nu, \mu, t) - \kappa(s, \nu, t)I(s, \nu, \mu, t)$$

Energy transport

$$E_{out} = E_{in,*} + E_{in,planet}$$

 $\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2}$

P = nkT

Consv. of Energy (in each layer)

Hydrostatic Eq.

Ideal Gas Law

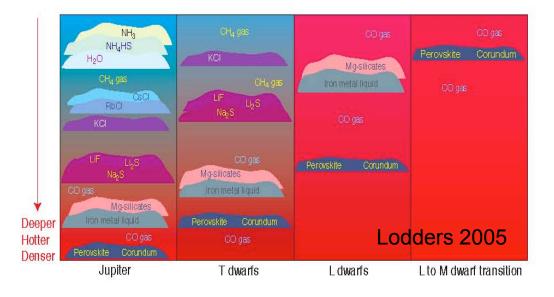
No simple equation

Chemical Equilibrium

Want to derive: Flux, *T*, *P*, ρ , chemical composition

Atmosphere Model Uncertainties

- Only known inputs
 - Surface gravity
 - Radiation from star
- Unknowns:
- Atmospheric circulation
- Clouds
 - Particle size distribution, composition, and shape
 - Fraction of gas condensed
 - Vertical extent of cloud
- Chemistry
 - Elemental abundances
 - Nonequilibrium
 - Photochemistry
- Opacities
- Internal Luminosities



Lecture Contents

- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
- Thermal Inversions
- Molecular Line Primer

Definition of Intensity

Intensity is a ray of infinitesimally small area, frequency interval, solid angle, and time interval. T intensity is traveling in the direction of photon propagation.

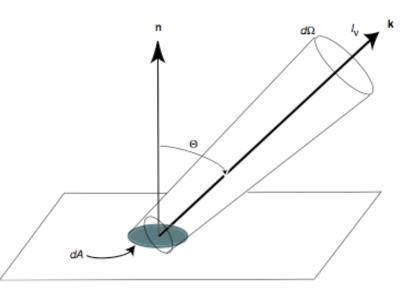


Figure 2.1 Definition of the specific intensity $I(\mathbf{x}, \mathbf{\hat{k}}, \nu, t)$.

$$dE(\nu, t) = \mathbf{I}(\mathbf{x}, \hat{\mathbf{k}}, \nu, t)\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} d\Omega dA d\nu dt.$$

1D Radiative Transfer Equation

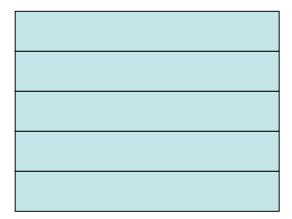
Change in Intensity = gains to the beam - losses from the beam

$$\frac{dI(s,v,t)}{ds} = \varepsilon(s,v,t) - \kappa(s,v,t)I(s,v,t)$$

I = intensity, ε = emissivity, *k* = absorption coefficient

Optical Depth τ

 $d\tau = -\kappa ds$



- A measure of transparency
- Think of an object in a fog
- When the object is immediately in front of you, the intervening fog has $\tau = 0$
- As the object moves away, τ increases
- τ is frequency-dependent
- We use τ as a vertical distance scale

1D Radiative Transfer Equation

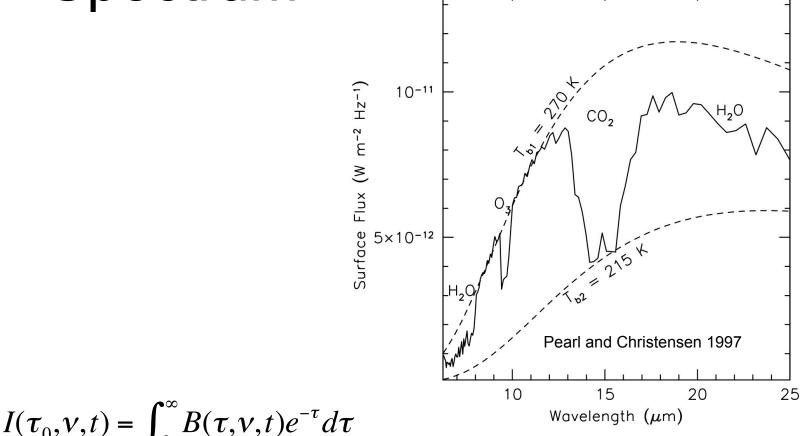
- Equation from before $\frac{dI(z,v,t)}{dz} = \varepsilon(z,v,t) \kappa(z,v,t)I(z,v,t)$
- Divide by κ $\frac{dI(z,v,t)}{\kappa(z,v,t)dz} = \frac{\varepsilon(z,v,t)}{\kappa(z,v,t)} I(z,v,t)$
- Substitute τ and use $-\frac{dI(\tau, v, t)}{d\tau} = B(\tau, v, t) I(\tau, v, t)$ Kirchoff's Law

1D Radiative Transfer Solution

$$\frac{dI(\tau, v, t)e^{-\tau}}{d\tau} - I(\tau, v, t)e^{-\tau} = -B(\tau, v, t)e^{-\tau}$$
$$\int_{0}^{\infty} \left[\frac{dI(\tau, v, t)e^{-\tau}}{d\tau} - I(\tau, v, t)e^{-\tau}\right]d\tau = \int_{0}^{\infty} -B(\tau, v, t)e^{-\tau}d\tau$$
$$I(\tau_{\infty}, v, t)e^{-\tau=-\infty} - I(\tau_{0}, v, t)e^{-\tau=0} = \int_{0}^{\infty} -B(\tau, v, t)e^{-\tau}d\tau$$
$$I(\tau_{0}, v, t) = \int_{0}^{\infty} B(\tau, v, t)e^{-\tau}d\tau$$

Emergent intensity is like a black body with "bites" taken out of it.

Earth's Thermal Emission Spectrum

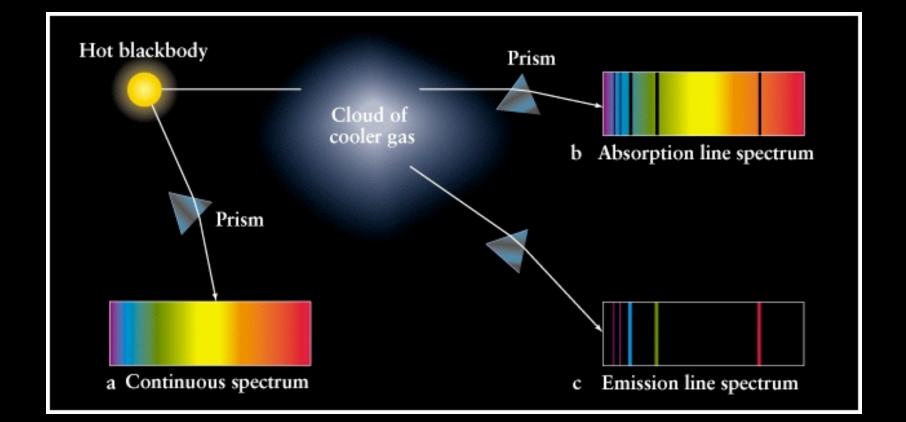


Emergent intensity is like a black body with "bites" taken out of it.

Lecture Contents

- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
- Thermal Inversions
- Molecular Line Primer

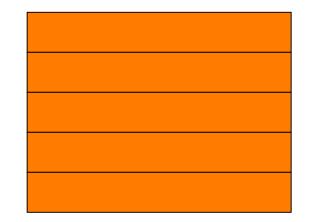
Origin of Absorption and Emission Lines



Constant Temperature

Assume that the deepest layer of a planetary atmosphere is a black body.

For an isothermal planet atmosphere, the spectrum emerging from the top of the atmosphere will also be a black body



Constant Temperature

I(0, v, t) = B(T, v, t)

$$\frac{I_{3}(z,v,t) = B_{5}(z,v,t)}{dz} = 0$$

$$\frac{dI_{3}(z,v,t)}{dz} = \varepsilon_{3}(z,v,t) - \kappa_{3}(z,v,t)I_{4}(z,v,t)$$

$$\frac{dI_{4}(z,v,t)}{dz} = 0, I_{4}(z,v,t) = B_{5}(z,v,t) \qquad \varepsilon(z,v,t)B(z,v,t)$$

$$\frac{dI_{4}(z,v,t)}{dz} = \varepsilon_{4}(z,v,t) - \kappa_{4}(z,v,t)I_{5}(z,v,t)$$

$$I_{5}(z,v,t) = B_{5}(z,v,t)$$

Read going up

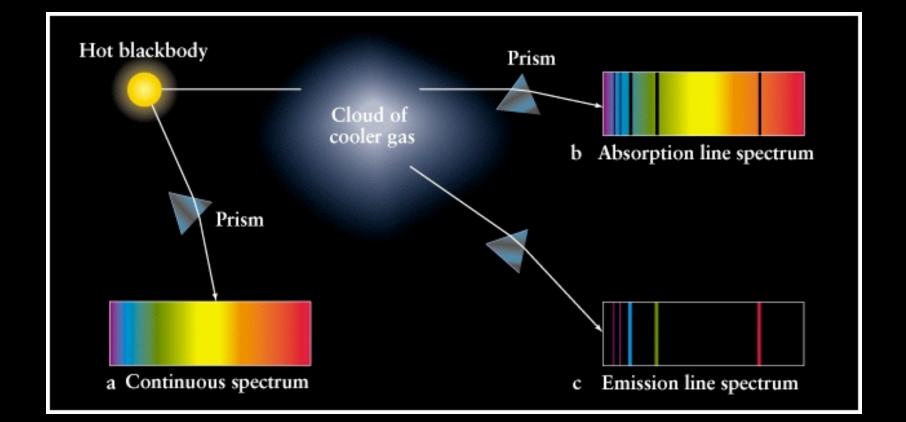
Constant Temperature

$$I(\tau_0, \nu, t) = \int_0^\infty B(\tau, \nu, t) e^{-\tau} d\tau$$

- No absorption or emission lines!
- Mathematically, constant *T* means B(τ,ν,t) = constant and can be removed from integrand

$$\int_0^\infty e^{-\tau} d\tau = 1$$
$$I(\tau_0, \nu, t) = B(T, \nu)$$

Origin of Absorption and Emission Lines



Decreasing T with Increasing Altitude

Think of this situation as cooler layers of gas overlying hotter layers. According to the conceptual picture law, an absorption spectrum will result.

Decreasing T with Increasing Altitude $I(\tau_0, v, t) = \int_0^\infty B(\tau, v, t) e^{-\tau} d\tau$

Take two values of κ at neighboring frequencies.

 κ_1 is in the band center and

 κ_2 is in the neighboring "continuum";

 $\kappa_1 \text{ is } >> \kappa_2.$

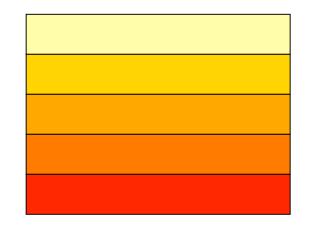
Consider an optical depth au

From optical depth definition $\tau = \kappa s$,

 s_1 is shallower than s_2 .

And $T_1 < T_2$, and $B_1 < B_2$.

Therefore, $I_1 < I_2$ namely the intensity is lower in the band center than the continuum, generating an absorption line.



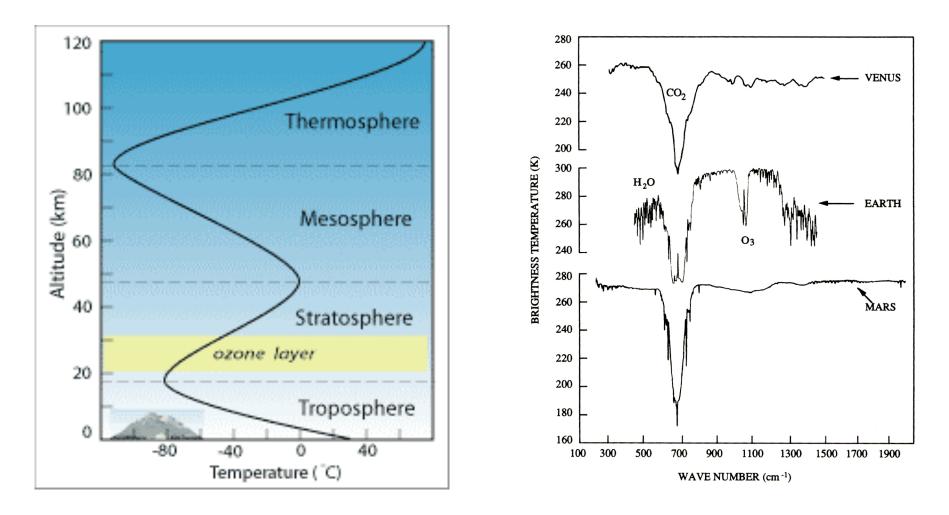
$$\varepsilon(z, v, t) = \kappa(z, v, t)B(z, v, t)$$

Decreasing T with Increasing Altitude

Do you expect emission or absorption lines if the temperature is increasing with altitude?

Think of the simple conceptual picture of where emission lines come from.

Earth

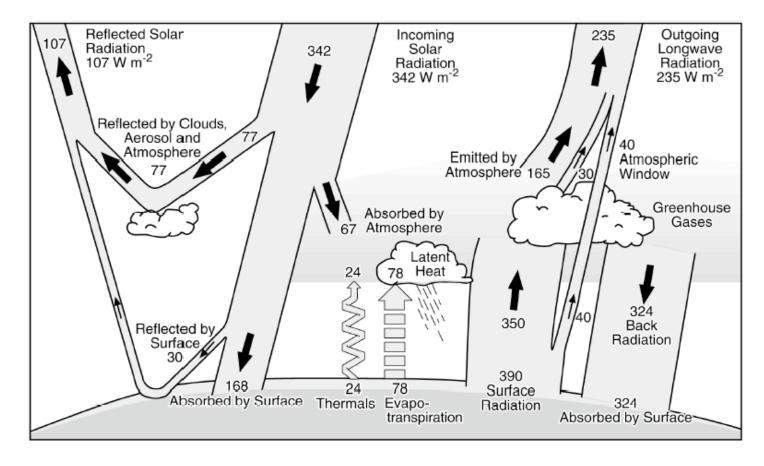


Hanel et al. 2003

Lecture Contents

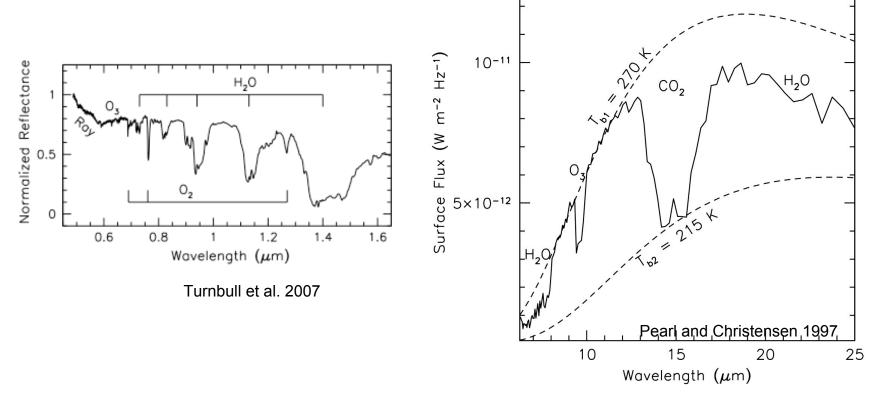
- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
- Thermal Inversions
- Molecular Line Primer

Atmosphere Processes



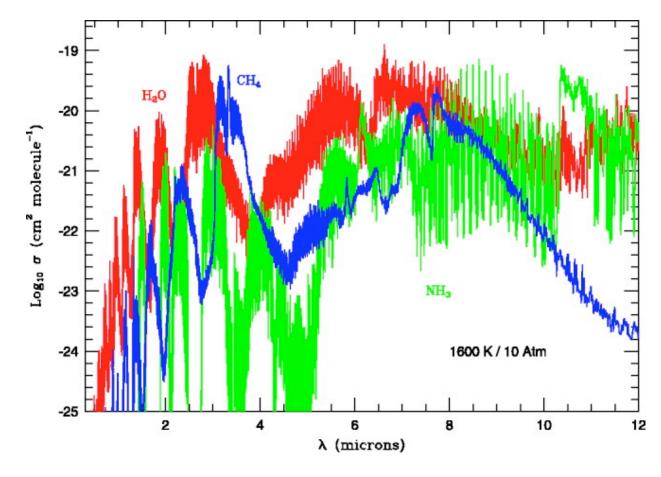
Kiehl and Trenberth, 1997

Earth's Thermal Emission Spectrum



Molecular absorption controls energy balance. Which molecule is Earth's strongest greenhouse gas? CO_2 , N_2 , H_2O , N_2O , or CH_4

Line-By-Line Opacities



Burrows and Sharp 2007

Absorption Coefficient

 $k_{\nu} = Sf(\nu - \nu_0)$

For a given molecule at a given frequency

k is in units of $[m^2/molecule]$ S is the line strength *f* is the (normalized) broadening function v_0 is is the wavenumber of an ideal, monochromatic line

$$\int_{-\infty}^{\infty} k_v dv = S$$
 Normalized

*Note: $\kappa_v = nk_v$ in units of [m⁻¹], where *n* is the number density for a given molecule

Summary

We want to find the absorption coefficient for a given transition

$$k_{v} = Sf(v - v_{0})$$

$$\int_{-\infty}^{\infty} f(v - v_{0})dv = 1$$
 Line broand coll

Line broadening includes Doppler broadening and collisional broadening.

Line strength is related to the square of transition probability, itself originating from quantum mechanics

$$B_{fi} = \frac{1}{4\pi} \frac{8\pi^3 v_{fi}}{3hc} \left| \int \Phi_f^* (\overline{\mu} \Phi_i) dV \right|^2 \left| \int \Sigma_f^* \Sigma_i d\sigma \right|^2$$

Selection rules for permitted lines

$$\frac{N_{j}}{N} = \frac{g_{j}e^{-E_{j}/KT}}{\sum g_{i}e^{-E_{i}/KT}}$$

 $\varepsilon_v = k_v B_v$

 $S \sim \left| \mathbf{R}_{ij} \right|^2$

The energy level population ratio in LTE is defined by Boltzmann statistics. *g* is the degeneracy.

Emission coefficient in LTE (Kirchoff's Law)

Summary

We want to find the absorption coefficient for a given transition

$$\begin{split} k_{v} &= Sf(v - v_{0}) \\ \int_{-\infty}^{\infty} f(v - v_{0}) dv = 1 \\ \sum_{n=1}^{\infty} f(v - v_{n}) dv = 1 \\ \sum_{n=1}^{\infty}$$

H Atom Energy Levels

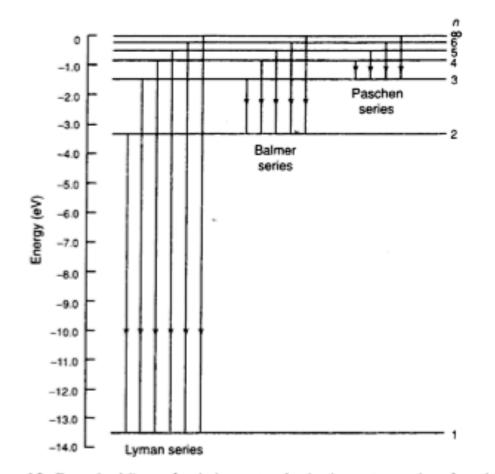
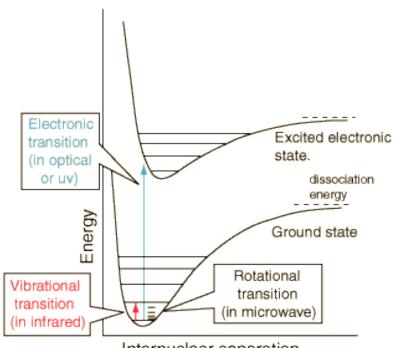


Figure 1.9 Energy level diagram for a hydrogen atom showing the quantum number n for each level and some of the transitions that appear in the spectrum. An infinite number of levels is crowded in between the levels marked n = 6 and $n = \infty$.

Molecular Energy Levels

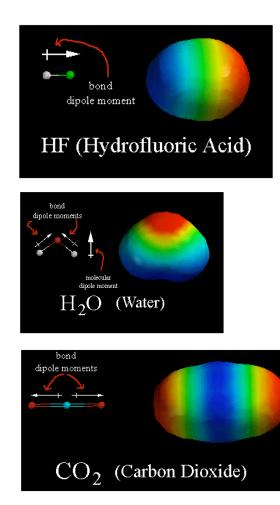
- Electrons travel much faster than nuclei
- We may assume that the electronic energy depends only on the positiions of the nuclei and not on their own velocities
- The potential energy distribution is then a function of the internuclear distances alone
- The potential energy has a minimum at locations where the attractive binding forces balance repulsive internuclear forces.



Internuclear separation

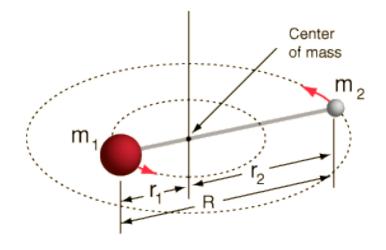
Molecular Energy Levels

- Which molecules have rotational-vibrational transitions?
- Must have an electric dipole to interact with radiation
- Electric dipole: a difference between the center of charge and the center of mass
- Homonuclear molecules do
 not have a dipole moment



Brent Iverson http://www.chem.tamu.edu/organic/Spring99/dipolemoments.html

Rotational Energy Levels



Rotation of a diatomic molecule • approximate the molecule as two masses m_1 and m_2 at a fixed separation r_1 and r_2

• the molecule rotations about an axis perpendicular to the line joining the nuclei

Linear diatomic molecules can be approximated by a classical rigid rotor. The classical expression for energy is Total energy = Kinetic energy + Potential energy. A classical rigid rotor has no potential energy.

$$E = \frac{1}{2} \sum_{i} m_{i} v_{i}^{2} = \frac{1}{2} I \omega^{2} = \frac{L^{2}}{2I}$$

 $\boldsymbol{\omega}$ is the rotation frequency

I is the moment of inertia = $\sum_i m_i r_i^2$

L is the angular momentum $L = \sum_{i} m_{i} \omega r_{i}$

Rotational Energy Levels

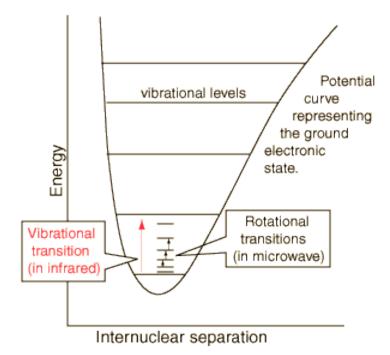
In classical theory E and ω can assume any value In quantum mechanics, the rigid rotor can only exist in discrete energy states.

To find the energy states, we would use the timeindependent Schrodinger equation (with the Hamiltonian expressed in terms of the angular momentum operator).

A pure rotational spectrum has energies at microwave frequencies.

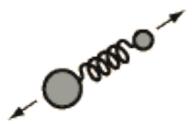
$$H\Psi = \frac{L^2}{2I}\Psi = E\Psi$$
$$H\Psi = \frac{J(J+1)\hbar^2}{2I}\Psi$$
$$E_J = \frac{\hbar^2}{2I}J(J+1)$$
$$J = 0, 1, 2, ...$$
$$B = \frac{\hbar^2}{2I}$$
$$\frac{N_J}{N_0} = (2J+1)e^{-BJ(J+1)/KT}$$

Vibrational Energy Levels



The potential energy can be approximated by the parabolic form of the simple harmonic oscillator.

Similar to a simple harmonic oscillator but with quantized energy levels at equally spaced values.



- In a linear diatomic molecule all vibratory motion takes place along the line joining the atoms.
- Think of the atoms in periodic motion with respect to the center of mass.
- As the molecule vibrates, rotational modes are also excited. Vibration and rotation occur together.

Vibrational Energy Levels

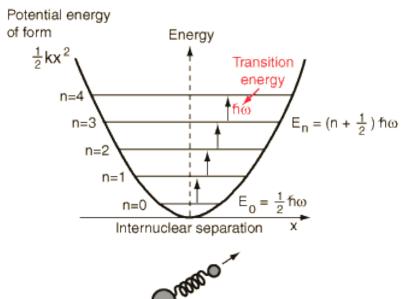
$$E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + V(x)$$
$$V(x) = \frac{1}{2}Cx^2$$
$$E = \frac{p}{2\mu} + \frac{1}{2}Cx^2$$

...Associate with the QM operator ...

$$E_{v} = (v + 1/2)h \left[\frac{1}{2\pi}\sqrt{\frac{C}{\mu}}\right]$$
$$E_{v_{k}} = \hbar\omega_{0}(v_{k} + 1/2)$$

 $v_k = 0, 1, 2...$ μ is the reduced mass k denotes the normal modes C is the bond force constant

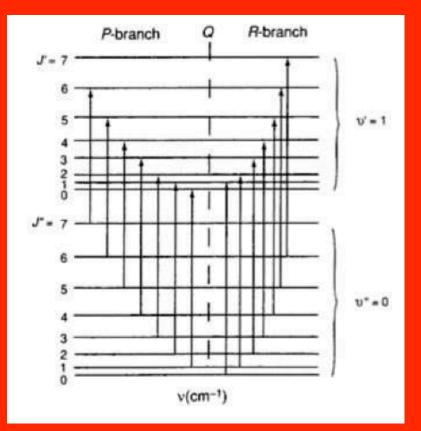
$$\omega_0 = \sqrt{\frac{C}{\mu}}$$



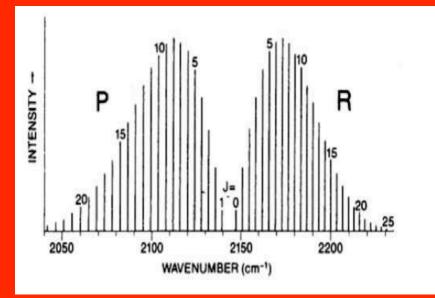
x=0 represents the equilibrium separation between the nuclei.

Energies ~ infrared

Rotational Vibrational Transitions



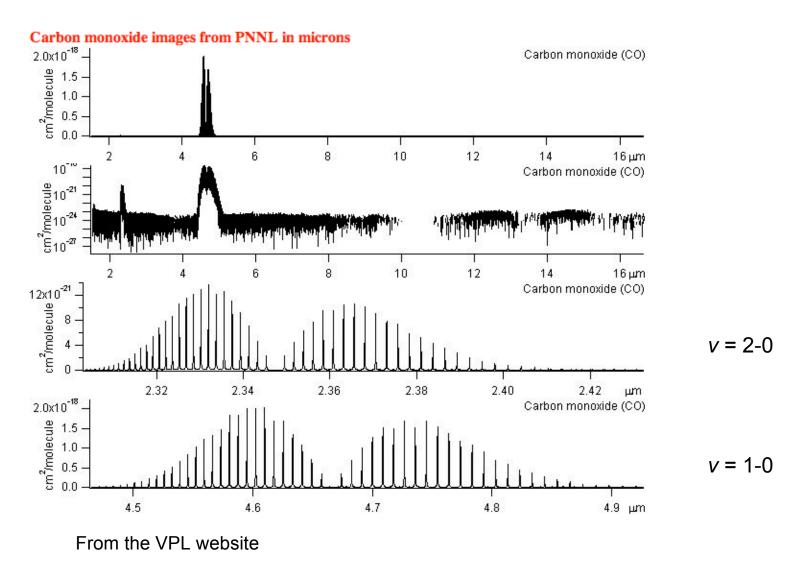
 $\Delta J = -1 P$ branch $\Delta J = 1 R$ branch



Simulated intensity of rotational-vibrational transitions of the CO molecule for the v = 1-0 band.

The vibrational transitions are always accompanied by rotational transitions.

Rotational Vibrational Cross-Sections for CO

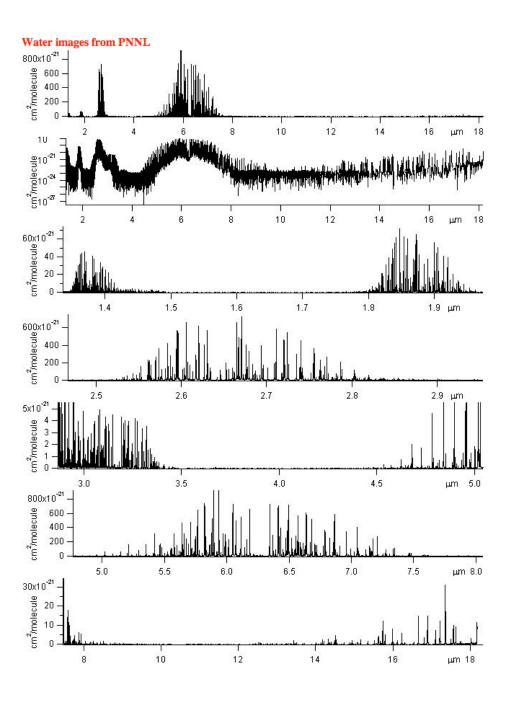


Non-Linear Molecules

3N-6 vibrational modes, where N is the number of atoms

http://en.wikipedia.org/wiki/Water_absorption

Water Vapor Cross Sections



From the VPL website

Summary

- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
 - 1D equation: change of intensity is the sum of gains to and losses from the beam
- Thermal Inversions
 - Absorption lines for no thermal inversion
 - Emission lines indicate thermal inversion
- Molecular Line Primer
 - Molecular vibrational and rotational lines (which appear in the IR spectrum) were outlined for a linear molecule

Planet Atmosphere Equations

$$\frac{dI(s, \nu, \mu, t)}{ds} = \varepsilon(s, \nu, \mu, t) - \kappa(s, \nu, t)I(s, \nu, \mu, t)$$

Energy transport

$$E_{out} = E_{in,*} + E_{in,planet}$$

 $\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2}$

P = nkT

Consv. of Energy (in each layer)

Hydrostatic Eq.

Ideal Gas Law

No simple equation

Chemical Equilibrium

Want to derive: Flux, *T*, *P*, ρ , chemical composition

Summary

- Overview of Equations for Planetary Atmospheres
- Radiative Transfer
 - 1D equation is change of intensity is the sum of gains to and losses from the beam
- Thermal Inversions
 - Absorption lines for no thermal inversion
 - Emission lines indicate thermal inversion
- Molecular Line Primer
 - Molecular vibrational and rotational lines (which appear in the IR spectrum) were outlined

A New Text Book

Exoplanet Atmospheres: Physical Processes

Sara Seager

Princeton University Press Should appear by end of 2009