High-contrast imaging using today's infrared interferometers

10.2 milliarcseconds

John Monnier & Ming Zhao (U. Michigan)

w/ Ettore Pedretti, Nathalie Thureau (St. Andrews),

T. ten Brummelaar (GSU/CHARA)

Why imaging?

- Complete orbital elements

 Inclination removes sin i degeneracy in mass
- Movie of orbit can reveal temperature differences on planet surface
- Low resolution spectroscopy
- Direct measurement of stellar diameter

Refs: Lopez & Petrov 2000; Segransan 2002; Monnier 2002; Joergens & Quirrenbach 2004; Vannier et al. 2005, Millour et al. 2005; Beuzit et al. 2006

Atmosphere Corrupts the Phase

The "Closure Phase" Is Not Corrupted

Closure Phase Method

- Need angular resolution to resolve star to planet separation (~2 milliarcsconds for nearby cases)
- Need many photons to beat down photon noise
 - 51 peg provides ~10^6 photons per 0.1 sec per 0.05 mu BW at H band for 1 m telescopes
- Uncertainty: calibration
 - Must use special combiners
- Who: CHARA, VLT Interferometers
 - must have at least 3 telescopes and LONG >100m baselines to resolve hot Jupiter systems

Table 1. Hot Jupiter candidates for CHARA-MIRC								
Star	Dist.	Н	Κ	Period	e	Semimajor axis	T_0	R_*
Name	\mathbf{pc}	mag	mag	day		AU (mas)	JD	mas
v And	13.5	2.957	2.859	4.6170	0.034	0.059 (4.42)	2450088.64	0.569
τ Boo	15.6	3.546	3.507	3.3128	0.018	0.049 (3.13)	2451653.968	0.45
$51 \mathrm{Peg}$	15.4	4.234	3.911	4.2310	0.01	0.051 (3.31)	2450203.947	0.35

Precision Closure Phase -- State of the Art

IOTA Interferometer:

statistical +/- 0.07 degs

Systematic +/- 0.20 degs

Monnier et al.

Precision Closure Phase -- State of the Art

VLTI Interferometer:

statistical +/- 0.06 degs [Differential phase]

statistical +/- 0.6 degs [Closure Phase]

Segransan et al.; Millour et al. 2005

The CHARA Array

Mount Wilson, CA

S1

S2

CHARA: Six 1-m telescopes, 15 baselines from 34m to 331m, 20 closure triangles

W1

W2

Built and operated by Georgia State University (McAlister et al. 2005; ten Brummelaar et al. 2005)

MIRC: Michigan Infrared Combiner

- Uses single mode fibers
- Image plane combination
- => stable and precise closure phase

Aller a constants

Significant CP correlations with telescope az and/or alt suggest polarization (or dispersion) effects

Zhao 2009

On the horizon... We have established precision at 10⁻³ level. Need another factor of 10 •Still not sure the cause of drifts (polarization?) Active efforts to detect hot Jupiters •VLTI: HD 189733, Tau Boo,.. •CHARA: Ups And, Tau Boo New Campaign planned this fall, with improved CHARA/MIRC performance

See 2009 PhD by Ming Zhao (U. Michigan -> JPL)