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Outline

The basics: how does the picture of interference 
change when the E field is a vector quantity.
What kind of observables result from combining 
polarimetry with long-baseline interferometry?
How can we turn a “normal interferometer” into 
one capable of polarimetric observations? 
(+examples)
How well should OIP calibrate?
What science areas can most benefit from OIP?



Recap: E-field as a scalar

Fringes are formed by splitting the electric field in two, 
phase-shifting one component and interferring:

This enables a ‘visibility’ to be defined as a ratio:

Ed = EA + EB exp(iδ)

Id = Ed Ed
* = EA

2 + EB
2 + 2 EA EB cos(δ)

V =
Imax − Imin

Imax + Imin



Interference with Vectors

All photons are polarized. Unpolarized light consists of a 
statistical distribution of photons in definite polarization 
states (incoherent sum, mixed quantum state…).
The polarization state of light is a complex vector:

The electric field can be split into 2 or more parts, and 
recombined. This is vector addition: interference!
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Jones Matrices

Optics operate on the electric field vector one at a time by 
matrix multiplication:

Example Matrices:
Polarizer               

Retarder (Mirror)  

Image Rotator

E' = J1J2...JnE
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Jones Matrices: Example.

Split 
wavefront

Delay Optics Beam-
splitter Polarizer Detector

E ⋅ E* 2

E ⋅ E* 2

1 0
0 0
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(any J with 
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The intensities as a function of delay δ are:

For polarizers at 45 degrees to x and y:

I1,x = Ex

Jones Matrices: Example.

2(1+ cos(δ))

I1,y = Ey

2
(1+ cos(δ − φ1 + φ2))

I2,x = Ex
2(1− cos(δ))

I2,y = Ey

2
(1− cos(δ − φ1 + φ2))

I1,x+y = I1,x−y =
1
2

( Ex
2 + Ey

2
)(1+ cos(φ1 − φ2

2
)cos(δ − (φ1 − φ2

2
)))

I1,x+y = I1,x−y =
1
2

( Ex
2 + Ey

2
)(1− cos(φ1 − φ2

2
)cos(δ − (φ1 − φ2

2
)))

⇒Phase Shifted Visibilities

⇒ Visibility amplitude reduction



Mueller Matrices and Stokes 
Parameters

In optical interferometry, we measure the response to 
partially-polarized sources, and measure intensity not 
electric fields.
From the intensities in different polarization states, we get 
the Stokes parameters:

I = Ix + Iy = Ex
2 + Ey

2

Q = Ix − Iy = Ex
2 − Ey

2

U = I45 − I−45 = Ex Ey
* + Ex

*Ey

= 2Ex Ey cos(δ) ,with δ the y − x phase shift.

V = IL − IR = i Ex Ey
* − Ex

*Ey = 2Ex Ey sin(δ)



Mueller Matrices and Stokes 
Parameters

A Mueller Matrix M transforms a stokes vector [I,Q,U,V] into a vector [I’,Q’,U’,V’]

Any Jones matrix can be written as a Mueller Matrix, but Mueller matrices also 
allow depolarization of the electric field.

We can also form visibility Mueller matrices: e.g. calculation of M11 for a “fringe 
signal” (visibility numerator EAEB

*):

M11 = [0,1,0,0]M
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Recap so far…

Fringes are formed by adding (complex) electric fields and 
squaring.
But, the E field is best represented as a vector. Fringes are 
formed by vector addition, and squaring the components.
The action of optics on the E field is represented by 
multiplication by 2x2 complex Jones matrices.
To consider intensities, we have to move from electric field 
vectors to Stokes parameters. These are intensity 
differences and sums of pure polarization states.
The action of optics on Stokes parameters is represented 
by multiplication by 4x4 Mueller matrices. These are real 
for incoherent intensities, and complex for fringe signals.



Visibilities in Stokes Parameters
Visibilities are always a ratio. The numerator (fringe signal) 
and denominator (incoherent flux) can both be expressed 
in terms of Mueller Matrices. 
Define the Stokes intensity vector I and the Stokes fringe 
vector F. Then a polarizaton state P (e.g. x:[1,1,0,0]) has 
one of 2 obvious visibility definitions. Only one of these has 
a non-zero denominator in general.

NB Elias (2004) (25 page, 83 Eqn paper) uses the second,  
and calls I: I0 and F: I12)

VP =
PMF F
PMI I

 or PMF F
I0

  ??



Astronomy with OIP

Herbig Ae/Be Stars from Perrin et al (2004)



Circumstellar Scattering

Unpolarized light Polarized light



OIP Visibility Curves

P Cyg Prediction (Chesneau 2003)

In the case of spherical 
symmetry, we can 
predict visibility curves 
for linear polarization 
parallel and 
perpendicular to the 
baseline
Obvious examples: 
winds from Hot stars, 
scattering around Mira 
variables…



SUSI Results (R Car)

Solid lines: Thin shell model, Dashed lines: Outflow model 

Ireland et al (2005)



Implementation at PTI

R1, R4 : half-wave plates. R3 : LCVR. R2: QWP. 
W1, W2 : YVO4 Wollastons.
Enables Measurement of arbitrary polarization 
states.



Calibration Strategy 1:
Raw Observables

Complex visibility ratios are un-affected by the 
atmosphere or instrumental polarizations.

Simple strategy: define back-end observables, and fit 
on-sky models for intensity and fringe signal directly 
to these observables. E.g. for a measurement of 
V’x/V’y

Vx
'

Vy
' =

Fx
'Iy

'

Ix
' Fy

' =
1,1,0,0[ ]MF F ⋅ 1,−1,0,0[ ]MI I
1,1,0,0[ ]M I I ⋅ 1,−1,0,0[ ]MF F

MF (seeing +optics) = f (seeing)MF (optics)



Assume that the polarimetric signal is small, i.e.

…and that as a good approximation I=[I0,0,0,0]
Then:

…where [a,b,c,d] is calculated from the system fringe Mueller 
matrix MF (work out yourself or ask me later).

VQ

VI

Calibration Strategy 2:
‘Intuitive’ Stokes Observables

<<1,VU

VI

<<1,VV

VI

<<1

VQ
'

VI
' =

1
2

(1−
Vy

'

Vx
' )

VQ
' VI ,C

'

VI
'VQ,C

' = [a,b,c,d] F
I0F0



Real PTI Example

HD 215373
(calibrator)
H-band, ~10s
integration per
Point.



Real PTI Example

S Lac “Q” parallel-perpendicular
When visibility ratios 
are converted to on-
sky VQ values.
A signal of 0.003 
with an error of 
0.001!



The Future: Planetary 
Signals?

A detection of polarized light from a CEGP will 
give a clear determination of grain size in the 
dust clouds.

λ = 5 times grain radius λ = 0.05 times grain radius
Seager et al. (2000)



Summary
The E-field is a vector, which can be manipulated by 
multiplication by Jones matrices and vector addition.
The interferometer response to intensity is best 
characterized using Mueller matrices.
OIP is ideal for the science of circumstellar
scattering.
OIP is a differential technique, that cancels-out 
atmospheric effects (high precision).
There are several ways that data can be calibrated: 
the final observables are functions of Stokes 
visibilities and not the visibilities themselves
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