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Electric Field (Fourier Optics)

The image-plane electric field F() produced by an on-axis plane wave
and an apodized aperture defined by an apodization function A() is
given by

1/2  pl/2
E(£,¢) = / / e T Az, y)dyda
—1/2J-1/2

1/2
E(p) = 27T/O Jo(2mrp) A(r)rdr,

where J, denotes the O-th order Bessel function of the first kind.

The unitless pupil-plane “length” r is given as a multiple of the
aperture D.

The unitless image-plane “length” p is given as a multiple of focal-
length times wavelength over aperture (fA/D) or, equivalently, as
an angular measure on the sky, in which case it is a multiple of just

A D.
The point spread function (psf) is the square of the electric field.



http://www.princeton.edu/~rvdb

Performance Metrics

Inner and Outer Working Angles

P iwa P owa

Contrast:

E*(p)/E*(0)

Integration Time / Throughput
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Some Throughput Measures
Throughput is a surrogate for integration time
Airy Throughput
Piwa
/ E*(p)2mpdp
0

Taim = T2

Piwa
=38 / E*(p)pdp.
(0]

or,

giwa Ciwa
Tuw=4 [ [ Qs
0 0
Total Throughput

1/2 1/2
Zotal — 4/ / A2(l’, y)dl’dy
0 0

Central Throughput

1/2
Zentral — E(O) — 27T/ A<T)dr
0
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Some Integration Time Formulas

Reference Integration Time (Perfect System / No Background)

(S/N)”

t =
" LA

Known Background
t1 Ay(P(0,00AS +Q> AF;) 1 AS+Q S AP,

% Q(Z Apij)Q : Tiotal Q(Z Apij)2
Photometric Estimation (Known Background)

t 1 AQZAR%JrQZAPf}

tO B ,Zzotal Q(Z AF)@%V

Photometric Estimation (Unknown Background)

1 QAc’AS'S AP - AdX(TARY] + ASAct/PX0,0 [

ty  Tota QAaAS ) AP — Aa?() ] AR
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The Optimization Problem

In general, it is too difficult to optimize integration time (or sharp-
ness) directly. Instead, we optimize its surrogate, throughput.

Home Page

Title Page
Thus, an optimal apodization problem is to find the function A(z, y)
(or A(r)) that maximizes a measure of throughput subject to con- Contents
straints on contrast at the desired inner and outer working angles.

First, some optimal smooth apodizations . . .
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Clear Aperture

FWHM = 1.02 pu. =124 Tp,, = 84.2%

WH[”M
+ R



http://www.princeton.edu/~rvdb

Infinite 1-D Optimization Problem

For an infinite aperture, the minimum variance aperture is a Gaus-
sian by the uncertainty principal:

@0p = [ Si@pPas/ [ |f@)do
(A >—/ 2| (s) st// 5)|2ds

Uncertainty Principal: (Az)(As) > ﬁ

Equality is achieved for Gaussian apodization.

However, truncating the Gaussian for finite apertures introduces sig-
nificant side-lobes.
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The Finite 1-D Optimization Problem

Q

J o E(£,0)%d¢
J o E(&,0)%dg

maximize

or, equivalently,

minimize / E(£,0)%d¢
Q
subject to  A(0) = 1.

Slepian (1961) solved this by formulating a finite uncertainty prin-
cipal, equality of which is found by solving the following eigenvalue
equation:

1 [T sin Q(t — s)

A== [ 16

T J_1/2 ()
Solution is the Prolate Spheroidal Wavefunction.

ds

This can also be solved via the calculus of variations.
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The Prolate Spheroidal Wavefunction

Airy Pattern (circle)

Home Page
Truncated Gaussian
Kaiser, beta=12.2 ’ Title P.
Prolate Spheroida, c=4 | | Itle "age
| » |
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For a contrast of 107'%, the inner working angle is 4 \/D.
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1-D Apodization (Square)
Slepian’s Prolate Spheroidal Wavefunction (y(z)) (1965)

FWHM =2  p. =4 Tapy = 25%

Good dark zone.
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A Direct Optimization Problem

We can formulate a related max-pseudo-area problem:

maximize f A(z)dx

subject to —10~ 5E(o ()< E0,0) <107°E(0,(),&wn < £
0<  A(x) <1, <z<l
Ax) <0, 0<z<1/
A(x)A"(z) < A'(x)?, 0<x<1/

This problem can be discretized to a linear program and very effi-
ciently solved numerically.

Solution is very similar to the prolate spheroidal apodization.

We can formulate a very similar problem in polar coordinates . . .
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2-D Apodization (Circle)
Slepian’s Generalized Prolate Spheroidal Wavefunction (y())

FWHM = 2 /0iwa == 4 ﬂiry —
Excellent dark zone. Home Page

Title Page

Contents

Page 13 of 38
Go Back
Full Screen
Close

D
V



http://www.princeton.edu/~rvdb

Single Shaped Pupil

On axis Electric Field is the same 1-D Fourier Transform:

1/2
E(,0) = /_ w(z)e ™ dy

1/2

FWHM = 1.9 p. =4 Ty = 43%

PSF for Single Prolate Spheroidal Pupil
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Larger Discovery Zone

We can open up the discovery space by stacking many openings.
Can reproduce any apodization.
For N openings, the electric field is:

2sin(w¢) (Y2 ( cos(mCw(x))
B0 =—"17r /O ( ot G () ) cos(2m&x)d
Expanding about { = 0, we identify:
1—A
) =

which for large N results in,

BE.¢) = 28%(;0 /O . (A(x) o (%C>Z> cos(2méx)da

For N large enough, diffracted light from openings can be made
arbitrarily small within discovery region.



http://www.princeton.edu/~rvdb

Multiple Pupil Mask (repeated)
FWHM = 1.9 p,.=4

Good dark zone. Possible to Make. Any Apodization.

—===E=_
= =

10 Pupil Mask 100 Pupil Mask
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Starshaped Masks

The polar equivalent multi-pupil mask.

Electric field here is given by:

E(p,¢) =2m fol 2 Ty (2mrp)(1 — s-au(r))rdr
—4> " 1f0 Jin(2mrp) cos(jN (¢ — 7T/2)) Sm(jNO‘T Jrdr

Second term throws light outside the owa for large enough N.
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Starshaped Masks: 20 and 150 Points

Any apodization works:

a(r) = QNWA(T)
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Multiple Pupil Mask (direct opt.)

We can also directly optimize the shapes of each opening.

FWHM = 2.0 py. =4

7—Airy = 30%

Throughput relative to ellipse
11% central obstr.
Easy to make
Very few rotations
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Binary Apodizations

What if we remove smoothness constraints?

maximize f01/2 A(x)dx
subject to —107"E(0,¢) < E(0,
0< Az

C) 10_5E<07 C)) fiwa S
) I 0<ux

VANIVA

It turns out that the numerical solution of this problem is zero-one
valued!

The optimal apodization is binary, i.e., a shaped pupil.

In 1-D, we call the resulting mask a barcode mask.
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Barcode Mask

FWHM = 2.1 pya =4  pPowa = 40
Taiy = 25% Contrast = 10"

40
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Barcode Mask w/ Smaller iwa

FWHM = 2.1 puwa =3 Powa =9

Taiy = 33.8% Contrast = 10"
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100 Vanes

Spiderweb Mask
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FWHM =2 pia =4 Powa =40 Taiy =
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Barcode Mask as Stepping Stone...

FWHM = 1.3 pwa =2  Powa = 20
Tairy = 39% Contrast = 107"

We can test this in the lab today!

A stepping stone to Checkerboard designs...
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Checkerboard Mask (Two Barcodes)

Uses tensor product property of rectangular masks.

FWHM = 0.94V2  pua = 2V2  pows = 25
Tairy = Contrast = 1071

Uses same principal as ASA (Tensor Product of 1-D Masks)

geall = g
"HNIHHIIN*HI lll'H‘NHNiIIIHHN'NI OH'INIHIIHH".
- - e - s
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Image Plane Occulter 0.6\/D + Checkerboard Lyot Mask

IOiwa — 14\/5 powa — 21 ﬂiry — COntraSt = 10710
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. with 2% Central Obstruction
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... Wavelength Dependence

A =90%, 105% of design value
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. with Higher Throughput
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. with Neither Occulter Nor C/O

FWHM = 1.12v/2 Piwva =4 Powa = 20
Tairy = 38% Contrast = 10"
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What may cause problems?

e Modeling Error

e Mask Manufacturing Error

e Pointing and Nonzero Stellar Size (6")
e Low-Order Aberrations

e Mid-Spatial Frequencies (WFSC)

e Speckle Leak
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e.g., Mask Accuracy

e Apodization
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e Barcode Masks
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Low-Order Aberration Sensitivy

Comparison of Focus Sensitivities at 4.6 A/D Field Angle Comparison of Astigmatism Sensitivities at 4.6 &/D Field Angle

Soirdiabraph

Change in Contrast Level
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Recent Laboratory Results
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Contrast Result
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