(Long-Baseline)
Interferometric Measurements of Binary Stars

A. Boden
MSC/Caltech & GSU

C. Hummel – USNO/ESO
G. Torres & D. Latham – CfA
H. McAlister – CHARA/GSU
Outline

- **Introduction:**
 - Why study binary stars (with an interferometer)...
 - What kinds of binary star measurements are interesting
 - What kinds of binary stars are best suited to interferometry

- **History of Interferometric Binary Star Measurements:**
 - Classical imaging
 - Speckle
 - Long-baseline interferometry

- **How Do Interferometers Measure Binary Stars**
 - Visibility model
 - Interpretation

- **Case Study: HD 195987**
 - Why is the system interesting
 - Measurements & integrated orbit modeling

- **Future Directions**
Why Study Binary Stars?

Don’t try to teach a pig to sing…it doesn’t work, and it annoys the pig!

- Multiplicity (binary) is a pervasive phenomenon
 - Multiplicity’s role in the star formation process
 - Most stars form in multiple associations
 - Multiplicity’s role in the field
 - Two out of three solar-like stars have a stellar companion (DM91)
 - Multiplicity’s role in stellar evolution
 - The cornucopia of interacting binary stars

- Binary star interactions are SIMPLE, allowing insight into the properties of the components
 - Mass (through physical orbit)
 - Radius
 - Luminosity (through photometry, physical & angular orbit)
The Lexicon of Binary Stars

- **Eclipsing Binaries**
 - Systems aligned so that components occlude each other (constrains inclination)
 - (By phase-space arguments) highly likely to be close => short-period

- **Spectroscopic Binaries**
 - Systems whose kinematics and component properties yield detectable component radial velocity variations
 - SB1 – single-lined binaries
 - SB2 – double-lined binaries
 - Most (almost all) eclipsing binaries are spectroscopic binaries
 - Combination directly yields masses, radii

- **Visual Binaries**
 - Systems whose components can be resolved into two distinct sources…
 - …Allowing astrometry
 - Motion in time yields orientation of orbit (inclination)
 - Combined with SB2 => masses, distance (luminosity)
What Kinds of Binary Information is Interesting?

- Multiplicity statistics
- Orbit characteristics statistics

 as remnants of the formation process
- Component properties
 - Mass, Radius, Luminosity (the “big” three)
 - Abundance

 as constraints on stellar astrophysics & measure of system age
 - Rotation

 as markers of tidal interaction & internal convective structure
- Distance (“orbital parallax”)

 for direct & indirect luminosity calibration
What Kinds of Binary Measurements are Interesting?

- **Photometry**
 - Detection and measurements of binary eclipses
 - Marker of stellar rotation period
 - System and/or component luminosity

- **“Imaging”**
 - Inference of association
 - Astrometry
 - “Absolute” (relative to some “quasi-inertial” fiducials)
 - “Relative” (two components relative to each other)

- **Spectroscopy**
 - Astrophysics of components
 - “Velocimetry” – gauging the line-of-sight motions of components
What Binaries are Suitable for Interferometry Study?

- Interferometers are made for high-angular resolution applications—so the answer is obvious...
- Small-angular scale (how small?)
- Short period and/or distant (how short, how distant?)

![Graph showing angular separation vs. period](image)

- Angular Separation (arcsec):
 - $M = 1.6 M_{\odot}$
 - $D = 400 \text{ pc}$

- Period (day):
 - 1 mas
 - 40 mas
 - 1.5 arcsec
Known Spectroscopic Binary Distributions

From Taylor, Harvin, and McAlister 2003

Log Greater Nodal Sep (mas)

Log Period (d)
“The Deal” with Binary Star Studies

- In (essentially) all cases, observational objective is to determine “physical orbit” (physical dimensions, orientation), this provides component masses.
- Eclipsing systems provide that with spectroscopy (“spectroscopic orbit”) & photometry (inclination).
- Non-eclipsing systems require integrating the “visual orbit” to determine system orientation.
- Ratio of physical and angular scales (e.g. semi-major axis) yields system distance (duh).

7-10 July 2003

MSS -- A
This slide left intentionally blank

➢ Why?
Describing Binary Systems

- (By definition) binary systems have *Primary* (A) and *Secondary* (B) components
- We describe binary kinematics with *orbital elements*
 - Four elements \((a, e, P, T_0)\) describe motion in the orbital plane
 - Three elements (Euler angles, \(i, \Omega, \omega\)) define orbital plane orientation
 - Three elements \((K_A, K_B, \gamma)\) describe rates projected onto the line-of-sight
- Additional parameters may describe component properties
 - Diameters \((\theta_A, \theta_B)\)
 - Intensity ratio \((r = B / A)\)
Historical Binary Studies

- Classical imaging/
- Speckle
- Long-baseline interferometry
 - Capella with Mt Wilson
 - α Vir with intensity interferometers
 - Mark III
 - HST FGS
 - NPOI
 - PTI
 - SUSY
The orbit of β Centauri determined from SUSI observations

Period: 357.0 ± 0.3 days
Inclination: 67.5 ± 0.4 deg
Semi-major axis: 25.3 ± 0.2 mas

Courtesy J. Davis
Admonitions From P. Tuthill

- Imaging may well be the “Holy Grail”, but the distinction between imaging and modeling is sometimes unclear.

- In all cases, you want to make optimal use of your data.

- Usually this means working “as close to your data” as possible.
Long-Baseline Interferometry Observables

- (L-B) Interferometers provide visual (i.e. astrometric) information on binary stars
- Interferometric visibility as proxy for relative component astrometry

\[
V_{\text{binary}} = \frac{P_A V_A + P_B V_B}{P_A + P_B} = e^{-2\pi i (u\alpha_1 + v\beta_1)} \left| V_A \right| + r \left| V_B \right| e^{-2\pi i (u\Delta\alpha + v\Delta\beta)} \left(1 + r \right)
\]

\[
V_{\text{binary}}^2 = V_{\text{binary}}^* V_{\text{binary}} = \left| V_A \right|^2 + r^2 \left| V_B \right|^2 + 2r \left| V_A \right| \left| V_B \right| \cos(2\pi (u\Delta\alpha + v\Delta\beta)) \left(1 + r \right)^2
\]

\[
= \left| V_A \right|^2 + r^2 \left| V_B \right|^2 + 2r \left| V_A \right| \left| V_B \right| \cos\left(\frac{2\pi}{\lambda} B \cdot \Delta s \right) \left(1 + r \right)^2
\]

\Delta s – relative separation
r – relative intensity
\(B \) – baseline

7-10 July 2003
MSS -- AFB
Separation Vector Modeling

Projected baseline motion (earth rotation) varies relative geometry

This geometry variation allows (straightforward!) estimation of binary separation
Examples of SUSI
Observations of β Centauri

10 May 1997: 5 metres

9 June 1998: 10 metres

11 April 1999: 15 metres

23 April 1999: 5 metres

Courtesy J. Davis
Integrated Modeling I

- Separation vector modeling works in many cases, but breaks down when:
 - System is marginally resolved, providing little visibility evolution on a given night
 - Few data points are available on given night
 - System moves appreciably during night
- Solution: integrated modeling – estimating orbit directly from visibilities (just like RV Orbit modeling)
- This is what (essentially) everyone in the business does

7-10 July 2003

Boden et al 1999
Integrated Modeling II

- While you’re at it, you might as well also directly integrate with RV measurements

Boden & Lane 2000
Case Study: HD 195987

- HD 195987 is a modestly low-metallicity ([Fe/H] ~ -0.5) double-lined spectroscopic binary (SB2)
- (Essentially) no eclipsing system constraints for metal-poor stellar models
- RV Orbit determine as part of Carney-Latham high-proper-motion survey
- Long-term velocity monitoring CfA
- Visibility orbit from PTI circa 1999
- Integrated orbit solution (Torres et al 2002)
- First (precision) O/IR interferometric solution for “metallicly-challenged” system
HD 195987 RV Orbit

- Modest eccentricity $(e \sim 0.3)$ double-lined orbit
- 0.1 contrast ratio in the visible – TODCOR extraction of RV lines
- 73 double-lined measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0 (d)</td>
<td>49404.825 ± 0.045</td>
</tr>
<tr>
<td>e</td>
<td>0.3103 ± 0.0018</td>
</tr>
<tr>
<td>γ</td>
<td>-5.867 ± 0.038</td>
</tr>
<tr>
<td>K_A</td>
<td>28.944 ± 0.046</td>
</tr>
<tr>
<td>K_B</td>
<td>36.73 ± 0.21</td>
</tr>
<tr>
<td>ω</td>
<td>357.03 ± 0.35</td>
</tr>
</tbody>
</table>
HD 195987 Visual Orbit

- a” ~ 15 mas; easily resolvable with PTI
- K-band operation facilitates measurement of secondary (r ~ 0.38)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (d)</td>
<td>57.3298 ± 0.0035</td>
</tr>
<tr>
<td>T0</td>
<td>51354.000 ± 0.069</td>
</tr>
<tr>
<td>e</td>
<td>0.30740 ± 0.00067</td>
</tr>
<tr>
<td>a</td>
<td>15.368 ± 0.028</td>
</tr>
<tr>
<td>i</td>
<td>99.379 ± 0.088</td>
</tr>
<tr>
<td>Ω</td>
<td>335.061 ± 0.082</td>
</tr>
<tr>
<td>ω</td>
<td>358.89 ± 0.53</td>
</tr>
</tbody>
</table>

Components rendered 3x actual size
HD 195987 Physical Orbit

- Simultaneous solution to both RV and PTI visibility data
- Complementary information about “mutual” elements (P, T₀, e, ω)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>57.32178 ± 0.00029</td>
</tr>
<tr>
<td>T₀</td>
<td>51353.813 ± 0.038</td>
</tr>
<tr>
<td>γ</td>
<td>-5.841 ± 0.037</td>
</tr>
<tr>
<td>KA</td>
<td>28.929 ± 0.046</td>
</tr>
<tr>
<td>KB</td>
<td>36.72 ± 0.21</td>
</tr>
<tr>
<td>a</td>
<td>15.378 ± 0.027</td>
</tr>
<tr>
<td>e</td>
<td>0.30626 ± 0.00057</td>
</tr>
<tr>
<td>i</td>
<td>99.364 ± 0.080</td>
</tr>
<tr>
<td>Ω</td>
<td>334.960 ± 0.070</td>
</tr>
<tr>
<td>ω</td>
<td>357.40 ± 0.29</td>
</tr>
</tbody>
</table>
HD 195987 System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (M)</td>
<td>0.844 ± 0.018</td>
<td>0.6650 ± 0.0079</td>
</tr>
<tr>
<td>Teff (K)</td>
<td>5200 ± 100</td>
<td>4200 ± 200</td>
</tr>
<tr>
<td>oPlx (mas)</td>
<td>46.08 ± 0.27</td>
<td></td>
</tr>
<tr>
<td>Dist (pc)</td>
<td>21.70 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>MV (mag)</td>
<td>5.511 ± 0.028</td>
<td>7.91 ± 0.19</td>
</tr>
<tr>
<td>MH (mag)</td>
<td>3.679 ± 0.037</td>
<td>4.835 ± 0.059</td>
</tr>
<tr>
<td>MK (mag)</td>
<td>3.646 ± 0.033</td>
<td>4.702 ± 0.034</td>
</tr>
<tr>
<td>V-K (mag)</td>
<td>1.865 ± 0.039</td>
<td>3.21 ± 0.19</td>
</tr>
</tbody>
</table>

- 2% Primary Mass, 1% Secondary Mass
- Factor of two better than Hipparcos
Stellar Model Comparisons

- Having determined component parameters, it’s time to test stellar models!

- No single set of models do a perfect job of predicting HD195987 component parameters

- This is how an observationalist defines progress…
Future Directions

- We’ve been doing this binary thing for a while, what is there left to do?
 - Component parameters for stars that are not well covered by eclipsing systems
 - Subgiant & Giant stars
 - Pre-main sequence stars
 - Metal-poor & metal-rich stars
 - Systems where there’s “extra” physics
 - Tidal interaction & angular momentum evolution
 - Interacting systems
 - Higher-order (hierarchical) systems
 - Systems where there is science beyond/in addition to the component properties
 - e.g. Cluster distances and ages
Evolved Stars

- Surprisingly few high-precision tests exist of stars off the main sequence…
 - 12 Boo
 - Omi Leo
- But some more are on the way…
Short Period Systems: Tidal Interactions

Fig. 5. Diagram eccentricity versus period for the complete nearby G-dwarf sample. Note the strong circularization effect due to tidal stresses for short periods binaries. The symbols are according to the multiplicity of the system: ● double, △ triple, □ quadruple.
Hierarchical Systems

- \(\eta \) Vir was a known triple system recently done by NPOI (Hummel et al 2003)
- Non-coplanarity of outer and inner orbits established (diff 5.1 +/- 1.0 deg)
Summary (what to take away…)

- Binaries are important systems to study
 - “The hydrogen atoms of stellar astrophysics” argument
- LB Interferometers have an important role to play in binary star studies:
 - Making “visual” binaries out of “spectroscopic” ones
 - Resolving more distant systems
 - “Competitive” accuracy with eclipsing systems
 - Providing angular scale (distance!) for eclipsing systems
 - Providing additional component diversity beyond eclipsing systems
- LB Interferometers can also provide new windows into physics beyond component parameters
 - Tidal interactions
 - “Yardsticks and chronometers”
- All interferometers should study binary stars
 - (…to the exclusion of all other science…)
- Enjoy BC…