Toward a comprehensive view of planet formation and evolution: probing the role of orbital migration in explanatory systems from their observed architecture

Research 1
prevalence of the two mechanisms from stellar obliquity distribution of hot Jupiters

Research 2
physical properties of compact multi-transiting systems

Research 3
validity test using eclipsing hierarchical triple systems

Orbital Migration
through the disk / few-body dynamics

unique photometric tools

Kento Masuda
(University of Tokyo —> Massachusetts Institute of Technology)
Spin-orbit misalignment in exoplanetary systems

The *planetary orbit* and *host-star rotation* are frequently misaligned in exoplanetary systems.
Origin of the spin-orbit misalignment: Nature or nurture?

1. Misalignment as an initial condition
 protoplanetary disk already misaligned with the stellar spin
 → orbits of multiple planets (if exist) are mutually aligned; only stellar spin is misaligned

2. Misalignment acquired through dynamical evolution
 scattering between multiple planets, secular resonance, perturbation due to the stellar companion…
 → both spin-orbit and orbit-orbit misalignments are possible

Case 1

Case 2
Toward a comprehensive view of planet formation and evolution

spin-orbit angles of long-period planets from various **photometric techniques**

+ **3D architecture** from **dynamical analyses** (transit timing/duration variations)

→ **dynamical history of observed systems and the role of migration**