

A New Dynamical Mass Measurement of the Directly Imaged Substellar Companion HD 984 B

Kyle Franson¹, Brendan Bowler¹, Tim Brandt², Trent Dupuy³, Quang Tran¹, Katelyn Ashok¹, Yifan Zhou¹

¹The University of Texas at Austin, ²University of California, Santa Barbara, ³University of Edinburgh

Dynamical Masses Test Substellar Cooling Models

- Masses of imaged planets/brown dwarfs usually inferred through cooling models.
- Dynamical masses anchor models and their underlying assumptions about GP/BD atmospheres and formation.

The HD 984 System

- Measuring a dynamical mass requires fitting the orbital motion of the companion and the acceleration it induces on its host star.
- The young, nearby F7 star HD 984 hosts a substellar companion HD 984 B³.

 Only 12 model-independent masses with well-constrained luminosities and ages have been measured (Fig. 1), leaving our picture of GP/BD luminosity evolution incomplete.

Fig 1: Luminosity-age plot of substellar companions with dynamical masses. The curves show cooling tracks¹ for planets (orange), brown dwarfs (blue), and stars (green).

 The star's proper motion changes between *Hipparcos* and *Gaia*, creating an opportunity to directly measure the companion's mass.

Observations

Our measurement combines NIRC2 high-contrast imaging, HPF RVs, and the HGCA astrometric acceleration

- We obtained new high-contrast imaging (ADI) sequences with NIRC2.
- PSF subtraction was done via PCA in the VIP package². We used negative companion injection to measure

New 3D Orbit Fit and Dynamical Mass

- We use the orvara package⁶
 to jointly fit the relative
 astrometry, radial velocities,
 and the Hipparcos-Gaia proper
 motions.
- The orbit fit constrains the mass of HD 984 B to between 50-70 M_{jup} at 95% confidence, (a substantial improvement over previous model-dependent previous model-dependent (masses of 33-94 M_{jup}⁴.

Fig 2: PSF-subtracted image of HD 984 B with NIRC2.

Fig 3: HGCA proper motions of HD 984 B.

- astrometry.
- Our new astrometry adds to previous imaging with NaCo, SINFONI, and GPI^{3,4}.
- HD 984's proper motion change between *Hipparcos* and *Gaia* DR2
 - reveals its tangential acceleration.
 - We use the Hipparcos-Gaia Catalog of Accelerations⁵ (HGCA), a recent cross-calibration of the two datasets.
 - 3 proper motions in the HGCA: the proper motions in *Hipparcos* and *Gaia* and an average proper motion from the difference in position between the two missions.

- We can confidently determine that HD 984 B is a brown dwarf (<75 M_{jup}).
- These new data have refined the companion's orbital elements and, in particular, increased the eccentricity from the previous fit⁴:

	Previous Orbit Fit ⁴	New Orbit Fit
a (AU)	18^{+10}_{-4}	$24.1^{+8.1}_{-4.4}$
е	$0.18^{+0.29}_{-0.13}$	0.73 ± 0.06
i (°)	119^{+6}_{-5}	$121.3^{+2.3}_{-2.1}$

Model Comparison

- We compare our dynamical mass to the predicted masses from two models^{7,1}.
- Our mass is consistent with both models.
 - The large age range of the host star (30-200 Myr)⁴ causes wide mass distributions for each cooling model that prevent comparative tests.
- Improving HD 984's age constraint is challenging, as rotational age indicators break down around its spectral type (F7).

Looking Forward

- We have measured the dynamical mass of the brown dwarf companion HD 984 B.
- This new benchmark system joins the 12 other dynamical masses of substellar companions.
- Testing substellar cooling models with this system is currently limited by the age range of the host star. Tightening the age constraint would enable a better model test.
- Continued RV monitoring of the system and upcoming Gaia data releases are expected to improve the dynamical mass of HD 984 B in the future.

References

[1] Burrows, A., et al. 1997, ApJ, 491, 856	
[2] Gomez Gonzalez, C. A., et al. 2017, AJ, 154, 7	
[3] Meshkat, T., et al. 2015, MNRAS, 453, 2378	
[4] Johnson-Groh, M., et al. 2017, AJ, 153, 190	
[5] Brandt, T. D. 2018, ApJS, 239, 31	
[6] Brandt et al. (submitted)	
[7] Baraffe, I., et al. 2003, A & Astrophysics, 402, 701	