The Best and Brightest Metal-poor Stars

<mark>Kevin Schlaufman</mark> Kavli Fellow, MIT

WISE at 5: Legacy and Prospects 12 February 2015

Schlaufman & Casey (2014), ApJ, 797, 13 Casey & Schlaufman (2015), ApJ, submitted

Nick Risinger (Photopic Sky Survey)

The Best and Brightest Metal-poor Stars

Kevin Schlaufman and Andy CaseyKavli Fellow, MITIoA Cambridge

WISE at 5: Legacy and Prospects 12 February 2015

Schlaufman & Casey (2014), ApJ, 797, 13 Casey & Schlaufman (2015), ApJ, submitted

Nick Risinger (Photopic Sky Survey)

The First Stars: Population III

Kevin Schlaufman 12 February 2015

15 < *z* < 20

Pop III protostars from Turk et al. (2009)

Metal-poor Star Candidates

The Old...

Spectroscopy First

While classical searches for metalpoor stars have achieved many successes, they are not perfect:

 They are resource intensive.
They fail in regions of high extinction and/or reddening.
They fail in crowded regions.
They only identify candidates with faint apparent magnitudes.

Theory of Infrared EMP Selection

Practice of Infrared EMP Selection

Kevin Schlaufman 12 February 2015 Schlaufman & Casey (2014)

(1) Select cool stars => 0.45 < J - H < 0.60

Practice of Infrared EMP Selection

Proof of Concept

Practice of Infrared EMP Selection

- (1) Select cool stars => 0.45 < J - H < 0.60
- (2) Select metal-poor stars => -0.04 < W1 - W2 < 0.04
- (3) Refine focus on metal-poor stars => J - W2 > 0.5 and J - W2 > 0.5[(B - V) - 0.8] + 0.6
- (4) Use logistic regression to enhance focus

Practice of Infrared EMP Selection

Kevin Schlaufman 12 February 2015 Schlaufman & Casey (2014)

(1) Select cool stars => 0.45 < J - H < 0.60

	Our Selection	Chance
-3.0 < [Fe/H] < -2.0	32.5%	0.1%
-4.0 < [Fe/H] < -3.0	3.8%	0.01%

(4) Use logistic regression to enhance focus

Apparent Magnitude Distribution

Distance Distribution

The Old and the New

Spectroscopy First

While classical searches for metalpoor stars have achieved many successes, they are not perfect:

 (1) They are resource intensive.
(2) They fail in regions of high extinction and/or reddening.
(3) They fail in crowded regions.
(4) They only identify candidates with faint apparent magnitudes.

WISE Photometry

The infrared selection of Schlaufman & Casey (2014) addresses many of those issues:

- (1) It uses only public APASS optical, 2MASS infrared, and WISE mid-infrared photometry.
- (2) A infrared-only variant is well suited to the identification of metal-poor stars in highly extincted and reddened fields.
- (3) It works well in crowded fields.
- (4) It identifies many bright candidates

Follow-up Program

Kevin Schlaufman 12 February 2015

Gemini South/GMOS-S

a n'an È a dia a 'a ag

Magellan/MIKE

Stars at a given metallicity form over a wide range in redshift, so metallicity alone is an imperfect measure of absolute age.

Oldest Stars are in the Bulge!

Kevin Schlaufman 12 February 2015

Extremely Metal-Poor (EMP) <=> -4.0 < [Fe/H] < -3.0

Most Metal-poor Stars in the Bulge

Kevin Schlaufman 12 February 2015 Schlaufman & Casey (2014)

Star (2MASS)T
efflog g[Fe/H]J183713-31410947970.99-2.70J181503-37512047281.09-2.84J155730-29392247201.12-3.02

Most Metal-poor Stars in the Bulge

Kevin Schlaufman 12 February 2015 Casey & Schlaufman (2015)

There's a 70% chance that at least one of these stars formed at $z \ge 10!$

J183713-31410947970.99-2.70J181503-37512047281.09-2.84J155730-29392247201.12-3.02

Detailed Abundances

Kevin Schlaufman 12 February 2015 Casey & Schlaufman (2015)

Detailed Abundances

AAT/AAOmega Follow-up Program Kevin Schlaufman 12 February 2015

Future Work

The Brightest Metal-poor Stars: a field survey based on Schlaufman & Casey (2014) will double the number of known EMP stars with V < 12. Only stars this bright can efficienty be observed with *HST*/COS+STIS UV spectroscopy.

The Most Ancient Stars: a bulge survey based on the infrared-only selection of Schlaufman & Casey (2014) will identify >100 EMP stars in the bulge, >10 of which should have formed at z > 15. It provides the best chance to identify any existing Pop III stars.

Exploiting This Technique

A few possibilities...

(1) Metal-poor K giants as tracers of the distance halo

- Dark Energy Spectroscopic Instrument (DESI), Subaru Prime Focus Spectrograph,...
- (2) Asteroseismology of extremely metal-poor stars
 - K2, Transiting Exoplanet Survey Satellite (TESS),...
- (3) Extremely metal-poor stars in dwarf galaxies, including the Magellenic Clouds
- (4) Extremely metal-poor stars in the halos of nearby galaxies with JWST/NIRCam grism spectroscopy
- (5) Gaia parallaxes and proper motions for orbital analyses