WISE quasars

Nadia Zakamska Johns Hopkins University

WISE quasars

Toward a census of quasars

Why is this an interesting thing to do Selection techniques

Extreme sources

Hot DOGs (Roberto Assef's talk) Extremely red quasars (ERQs??)

Why are they extremely interesting Quasar feedback at the peak of galaxy formation

- Demographics of quasars (obscured vs unobscured) is still an unsolved problem
- Especially at high luminosities, especially at z=2-3
- Quasars, quasar obscuration played key role in galaxy formation
- Especially at high luminosities, especially at z=2-3
- Soltan argument, X-ray background, obscuration geometry / evolution

Figure 1. Behavior of f_2 with estimated bolometric luminosity. Upper panel, open symbols: data from Tueller et al. (2009); crosses: Hasinger (2008). Lower panel, filled circles: De Grijp et al. (1992); open circles: Rush et al. (1993); open squares: Lacy et al. (2007); filled triangles: Ogle et al. (2006); dashed line: Ho et al. (1997). Error bars are 68% confidence except for the lower limit at high X-ray luminosities, which shows a 90% confidence interval.

Lawrence & Elvis 2010 Reyes, Zakamska et al. 2008

(W^o)

- Demographics of quasars (obscured vs unobscured) is still an unsolved problem
- Especially at high luminosities, especially at z=2-3
- Quasars, quasar obscuration played key role in galaxy formation
- Especially at high luminosities, especially at z=2-3

Soltan argument, X-ray background, obscuration geometry / evolution

Hopkins et al. 2007 (Boyle & Terlevich 1998)

- Demographics of quasars (obscured vs unobscured) is still an unsolved problem
- Especially at high luminosities, especially at z=2-3
- Quasars, quasar obscuration played key role in galaxy formation
- Especially at high luminosities, especially at z=2-3
- Soltan argument, X-ray background, obscuration geometry / evolution

Antonucci 1993

Sanders et al., Hopkins et al.

In principle, WISE is sensitive to both obscured and unobscured population

AGN excess over the galaxy – red W1-W2 colors

In practice, wide range of quasar SEDs

Power-laws vs `screen of cold dust'

In principle, WISE is sensitive to both obscured and unobscured population

AGN excess over the galaxy – red W1-W2 colors

In practice, wide range of quasar SEDs

Power-laws vs `screen of cold dust'

Pier & Krolik 1993

Nenkova et al. 2002 (also Nikutta's talk)

In principle, WISE is sensitive to both obscured and unobscured population

AGN excess over the galaxy – red W1-W2 colors

In practice, wide range of quasar SEDs

Power-laws vs `screen of cold dust'

Yan et al. 2013 (also Stern et al.)

In principle, WISE is sensitive to both obscured and unobscured population

AGN excess over the galaxy – red W1-W2 colors

In practice, wide range of quasar SEDs

Power-laws vs `screen of cold dust'

- Observationally, agreement between different selection methods at x10% level
- Something strange especially at high luminosities
- Important regime for quasar feedback
- Conclusion: existing methods are "clean" but not complete
- Solvable but unsolved problem

Mateos et al. 2013 (based on optically selected type 2s from Reyes, Zakamska, et al. 2008) see also poster by Marvin Rose

Hot DOGs: Roberto's talk

Selected as very red in WISE colors (Eisenhardt et al. 2012)

Any redder and they would be Cold DOGs... (but typical for star-forming galaxies)

Astonishing intrinsic luminosities: 10⁴⁷-10⁴⁸ erg/sec

X-ray follow-up: extremely luminous, extremely obscured

Hot DOGs: Roberto's talk

- Selected as very red in WISE colors (Eisenhardt et al. 2012)
- Any redder and they would be Cold DOGs... (but typical for star-forming galaxies)
- Astonishing intrinsic luminosities: 10⁴⁷-10⁴⁸ erg/sec

X-ray follow-up: extremely luminous, extremely obscured

Stern et al. 2014

Hot DOGs: Roberto's talk

- Selected as very red in WISE colors (Eisenhardt et al. 2012)
- Any redder and they would be Cold DOGs... (but typical for star-forming galaxies)
 - Astonishing intrinsic luminosities: 10⁴⁷-10⁴⁸ erg/sec
- X-ray follow-up: extremely luminous, extremely obscured

Piconcelli et al. 2015

Extremely red quasars

- Start with SDSS quasar catalog, select objects that have high W4/optical ratios
- Aim to select obscured AGN (provided they were also optically selected!)
- **Bimodal redshift distribution**
- Red type 1s, type 2s, BALs...
- A population with bizarre optical line properties

Extremely red quasars

- Start with SDSS quasar catalog, select objects that have high W4/optical ratios
- Aim to select obscured AGN (provided they were also optically selected!)
- **Bimodal redshift distribution**
- Red type 1s, type 2s, BALs...
- A population with bizarre optical line properties

Ross, Hamann, Zakamska, et al. 2014

Extremely red quasars

- Start with SDSS quasar catalog, select objects that have high W4/optical ratios
- Aim to select obscured AGN (provided they were also optically selected!)
- **Bimodal redshift distribution**
- Red type 1s, type 2s, BALs...
- A population with bizarre optical line properties

3. Why are these extreme sources relevant?

- Have a suspicion that they may be sites of "quasar feedback at peak galaxy formation"
- z=2-3 is peak of galaxy formation, quasar activity
- Likely when black hole / bulge correlations were established
- Quasar feedback limited the maximal mass of galaxies
- Major theoretical, observational effort in extragalactic astronomy, cosmology

Boyle & Terlevich 1998 Hopkins et al. 2008

3. Why are these extreme sources relevant?

What are observational signs of quasar feedback?

Feedback: strong effect of the quasar on the surrounding galaxy-wide, extragalactic environment

Until recently unclear. But now several different methods: molecular outflows, neutral outflows, absorption line outflows, emission line outflows

Both radio-loud and radio-quiet quasars are capable

Artist: L. Cook / Gemini Observatory

3. Intro to quasar feedback

- For example, radio-quiet quasars (no jets)
- Close to the black hole: radiatively driven winds ("line-driving")
- ─ up to >10% of c!
- = 10⁷ year bomb in a gas-rich medium
 - Density distribution, clumping of the ISM crucial

Murray et al. 1995 Proga et al 2000

3. Intro to quasar feedback

For example, radio-quiet quasars (no jets)

Close to the black hole: radiatively driven winds ("line-driving")

up to >10% of c!

- = 10⁷ year bomb in a gas-rich medium
 - Density distribution, clumping of the ISM crucial

Wagner et al. 2013 Spherically symmetric models: King, Faucher-Giguere & Quataert: typical velocities at large scales of 1000 km/sec.

3. Observations of feedback in low redshift quasars

- We should see photo-ionized, shockionized gas in the outflow on galaxy scales
- Look at emission lines
- Spherically symmetric outflow: high physical velocity = high line-of-sight velocity dispersion

Obscuration in the outflow or host galaxy=blueshifted asymmetries

Approximately: v₀=FWHM/1.4

3. Observations of feedback in low redshift quasars

We see this at low redshifts!

- IFU observations revolutionizing this area
- Line-of-sight velocity dispersion ⇒ typical outflow velocity=800 km/sec
- Blue-shifted asymmetries = classical outflow signatures

Liu, Zakamska, et al. 2013ab,2014

10

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

0.1

-0.1

-0.2

-0.3

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

0.08

0.04

-0.04

-0.08

10

3. Observations of feedback in RQ quasars

Now seen by several groups in type 1 and type 2 quasars (e.g., Harrison et al., Rupke & Veilleux, Husemann et al., Villar-Martin et al., Hainline et al., Alexander et al., Cano-Diaz et al., etc.)

IFU and long-slit spectroscopy

How to convert to masses, energies?

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.1

-0.2

-0.3

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.04

-0.08

Liu, Zakamska, et al. 2013ab, 2014

Raw results alert

Consuming raw or undercooked data may increase risk of confusion

- VLT NIR spectra, rest-frame optical
- With Fred Hamann, Isabelle Paris
- Extreme [OIII] widths, extreme blue asymmetries
- Physical velocities >3000 km/sec
- Unprecedented at low redshift
- Possibly the "smoking gun" of powerful feedback?

VLT NIR spectra, rest-frame optical

With Fred Hamann, Isabelle Paris

Extreme [OIII] widths, extreme blue asymmetries

Physical velocities >3000 km/sec

Unprecedented at low redshift

Possibly the "smoking gun" of powerful feedback?

VLT NIR spectra, rest-frame optical

With Fred Hamann, Isabelle Paris

Extreme [OIII] widths, extreme blue asymmetries

Physical velocities >3000 km/sec

Unprecedented at low redshift

Possibly the "smoking gun" of powerful feedback?

For comparison: the most extreme type 2 objects at low z, v₀=1500-2000 km/sec Zakamska & Greene 2014

Summary

Demographics of quasars remains an unsolved problem

IR surveys can potentially solve this problem, especially supported by multiwavelength observations, better models

WISE: combination of sensitivity, wavelength coverage, sky coverage

WISE discovery: extremely luminous obscured quasars at peak galaxy formation

Possibly "smoking gun" of quasar feedback

