Space Opportunities: Hardware to Vaporware

 Characterization of Jupiters to Super Earths

 Complete census over Mass-Period plane

 Characterization of Earths

- Spitzer (<2013)---senior review!
- JWST (2018+)
 - Planet imaging and transit follow-up
- SPICA (2018)
- Explorers (2017)
 - All sky transit surveys (vis & near-IR)
 - Transit follow-up
- PLATO (2018)
 - Transit over 50% sky, stellar ages
- ECHO (2022)
 - Transit follow-up
- WFIRST/WIRES (2021++)
 - Maybe microlensing
- EUCLID (2018)
 - Maybe microlensing
- Optical/UV telescope with coronagraph (2025+)
- Astrometric mission (NEAT), 2030

EUCLID:

ESA mission with one Science goal that drives the requirements.

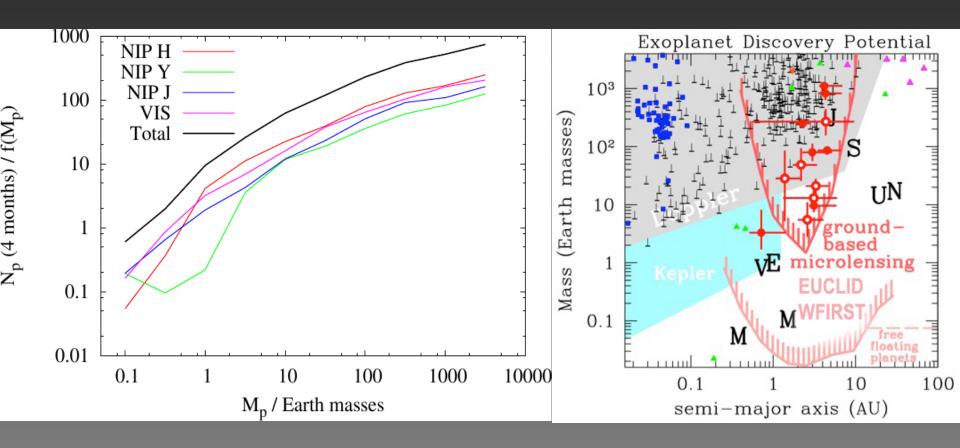
EUCLID is a Weak Lensing and BAO Machine.

The rest is legacy Science and has no right to fix requirements.

However:

- Cosmic Shear and Microlensing share the same needs!
- Due to EUCLID orbit strategy, 2+ month/year in galactic plane

Microlensing program:


- 4 months -> census on cold planets
- 10 months -> towards habitable Earth
- 5 years mission
- L2 orbit
- Korsch telescope 1.2m
- Optical focal plane (0.55-0.92 µm): 0.55 sq deg, 0.1 arcsec/pixel (36 CCDs)
- NIR focal plane (Y, J, H): 0.58 sq deg, 0.31 arcsec/pixel (16 Hawaii RG II)
- NIR Spectroscopy channel: 0.5 sqdeg R=200-600, 0.9-1.7 mu, slitless redshifts

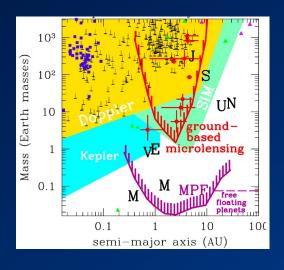
EUCLID

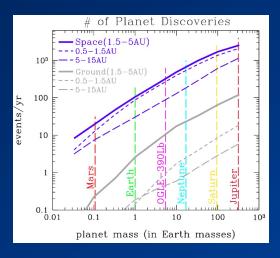
In competition with:
PLATO & Solar Orbiter
for ESA Cosmic Vision 2

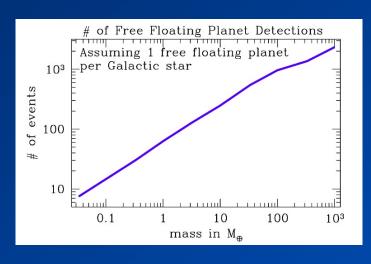
Up to 2/3 will fly.

Selection in October 2011

Simulations by Penny et al.


WFIRST


Science Goals:


- Determine the mass ratio, and projected separation probability distribution (in units of the Einstein ring radius) for cold planets with M>M_{Earth} and a>0.5 AU.
- Measure the frequency of potentially habitable planets.
- Measure the frequency of free-floating planets with M> M_{earth}.
- Measure the host star masses in order to determine the mass and projected separation distributions in physical units.
- WFIRST + Kepler = Complete demographics for >M_{Earth} and 0-∞ (including habitable for FGK stars)

Current Status:

- Defining the science for a reference mission (=JDEM-Omega)
- Descopes and/or mergers with Euclid possible later.
- Microlensing is in a relatively good position: requirements are less stringent than other science.

Future Exoplanet Missions: The Case for Direct Imaging

Wesley Traub, JPL

Exploring Strange New Worlds, Flagstaff, 1-6 May 2011

Astro2010 View

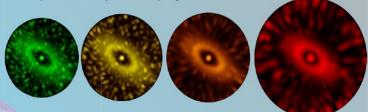
- Complete JWST
- No SIM
- Advanced RV
- Exozodi from ground
- Eta-sub-Earth begun by Kepler
- Eta-sub-Earth completed by Microlensing on WFIRST
- Decide on direct imaging mission by 2015
- Tech development 2015-2020
- Propose direct imaging mission to Decadal in 2020

Zodiac II Debris Disk Science from a Balloon

Principal Investigator: Dr. Wesley A. Traub

Science Investigation

- Zodiac II is an investigation of debris disks around nearby stars, based on visible, four-color images, obtained with a telescope and coronagraph instrument, mounted on a balloon gondola, during four flights in the Earth's stratosphere.
- Debris disks around stars are the analogs of the Sun's Asteroid- and Kuiper-Belt rings.
- Zodiac II observations are crucial to theories of planet formation (e.g., the Nice model).


Science Questions

- Zodiac II images give us answers to these questions:
- How are debris disks produced?
- How are debris disks shaped by planets?
- What materials are debris disks made of?
- How much dust do debris disks make as they grind down?
- How long do debris disks live?
- Target of Opportunity: What controls the visible brightness of hot, young exoplanets?

NASA Program Relevance

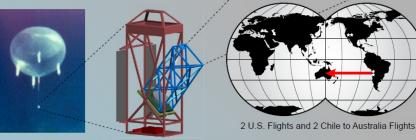
- NASA Science Mission Directorate plan for 2010:
- What are the characteristics of planetary systems orbiting other stars?
- Can we understand planetary system formation and evolution?
- Astro2010 (New Worlds, New Horizons) recommendation:
- A technology development program for a planet-imaging mission beyond 2020.

· Zodiac II responds directly to these program elements.

Simulated 4-color image of a debris disk, after 1-hour integration.

Each image shows a highly suppressed central star, the surrounding debris disk, and realistically simulated noise ("speckles") from the instrument.

Instrument


- 1.1-m diameter telescope, for angular resolution and collecting power.
- Imaging coronagraph, to keep bright star from flooding disk image: final contrast 10⁻⁸.
- Visible wavelength operation, to see reflected light from disk: 500-990 nm.
- · Four spectral bands, to measure disk color.
- Stratospheric balloon platform, to get above Earth's turbulence: 35 km.
- Multi-hour integration times, to capture faint disk images: 4 flights, 25 targets.
- No current or planned facility can match Zodiac II on debris disks, by factor of 100.

Technology Gains

Zodiac II flights will raise the technology readiness level of four technologies to TRL-7, directly relevant to a future strategic mission for imaging exoplanets.

Implementation

- Launch vehicle: a standard helium-filled balloon
- Science Instrument: mounted on gondola

Zodiac II

Zodiac II flies on a balloon like this (photo by the PI, of one of his 20 previous flights). Insets show gondola, telescope, and a debris disk model.

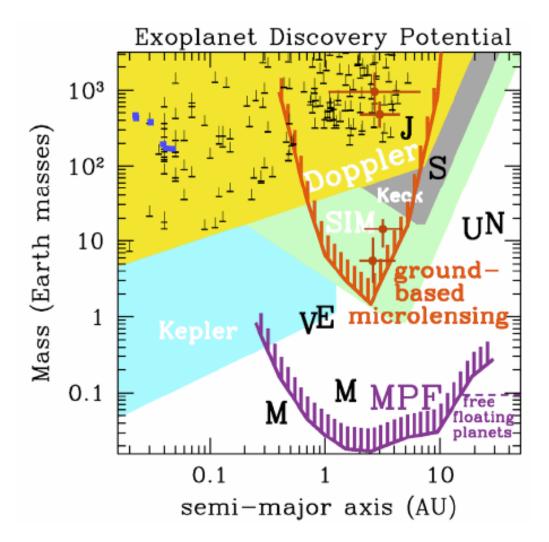
Pointing & Wavefront Control

- Image positioning to 0.02 arcsec RMS (requirement is 0.04 arcsec)
- German/U.S. Sunrise balloon focal plane achieved 0.04 arcsec in 2009
- Wavefront control is 0.3 nm RMS (require 1 nm)
- JPL High Contrast Imaging Testbed demonstrated 0.05 nm in 2006

Team Expertise

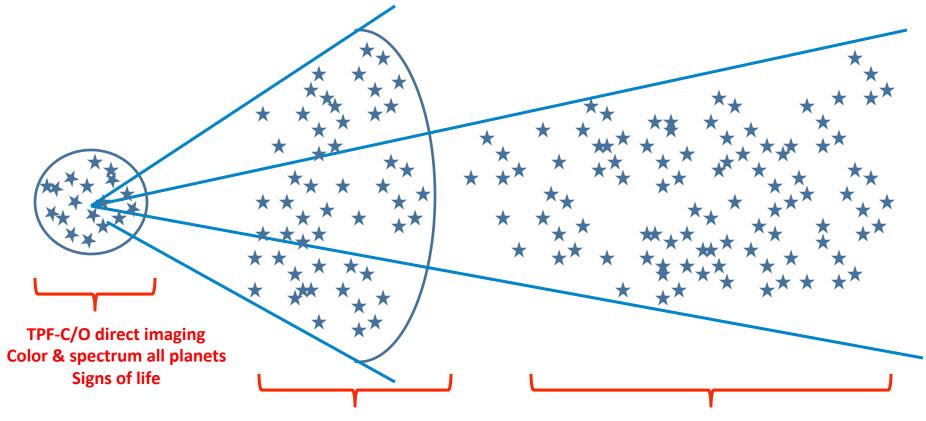
P. Chen	pelfeldt, B. b, J. Trauç ht	Mennesson ger	Debris disks and Zodiacal dust science Wavefront sensing and control Coronagraph theory and practice Interferometric instruments Project manager and system engineer				
Northrop (etics	Large missions, SiC mirrors, deformable mirrors					
NASA Wa D. Stuck	llops Fligh nlik	t Facility		Balloon flight systems, precision gondola pointing			
Lawrence B. Macir	National	Laboratory	Coronagraphy, telescopes, adaptive optics				
Boston Ur S. Chak			Coronagraphy on a sounding rocket				
FY12	FY13	FY14	FY15	FY16	FY17	FY18	Cost Estimate
PHA	PHB	PHASE C	PHASE D L#1	PHASE L#2 L		L#4	Total Cost: \$54M (EV11)

Total Cost: \$54M (FY11)


\$59M (RY)

Phase B/C/D: 30% reserve Phase E/F: 20% reserve

Major Responsibilities


Telescope: NGAS-Xinetics Gondola: NASA WFF Coronagraph: JPL Science & Mgmt: JPL

WFIRST mission

WFIRST mission, recommended by Astro2010, is 30% devoted to searching for exoplanets using the gravitational microlensing technique. This project will provide statistics of the numbers of planets in the 1-30 AU range, complementing Kepler's 0.1-1.0 AU range (both ranges approximate). Figure from the MPF proposal, 2006, Dave Bennett et al.

Exoplanet prospects, near and far

PLATO transits/seismology 100-400 pc distant 250,000 stars 10 to 13 mag 8% of sky Expect 400 Earths (1/star) Also related proposals CoRoT transits/seismology 400 to 2000 pc distant ~40,000 stars 13 to 15 mag 0.01% of sky

Kepler transits/seismology 500 to 2000 pc distant 156,000 stars 14 to 16 mag 0.24% of sky Expect 400 Earths (1/star)

ML on WFIRST, TBD planets, kpc distances

Exoplanet Community Response to Astro2010

Jan. 2011: ExoPAG* agrees on path to a single mission concept, by 2015, for an exoplanet direct-imaging mission in the 2020s, as recommended by Astro2010:

- 2011: ExEP (Exoplanet Exploration Program) initiates Imaging Performance Study (IPS), a community-wide demonstration of simulated exoplanet detection and characterization using 3 direct-imaging architectures.
- 2012: IPS carried out, with 6 teams, competitively extracting planet signatures, from simulated imaging data, with realistic instrument and data sets.
- 2013: Interim Science Working Groups (ISWGs) produce Concept Study Reports on 3 direct-imaging architectures.
- 2014: Senior Review evaluates 3 ISWG reports, & recommends 1 architecture.
- 2015: NASA down-selects architecture, & informs CAA (not DSIAC).
- 2015-2020: Technology development of selected architecture.
- 2020: Exoplanet direct-imaging mission concept readied for Decadal Committee.

^{*} ExoPAG: Exoplanet Program Analysis Group (chair Jim Kasting, Penn State), reports to Astrophysics Subcommittee (chair Alan Boss), of the NASA Advisory Council Science Committee (chair Wes Huntress).

Task from Chas: Science Issues for direct imaging (IR) on Earth-like Planets: 1 Tamura's

Why IR? (compared with OPT)

 Planets are cold, in particular habitable ones peak at MIR (~10 micron) in thermal flux.

inputs

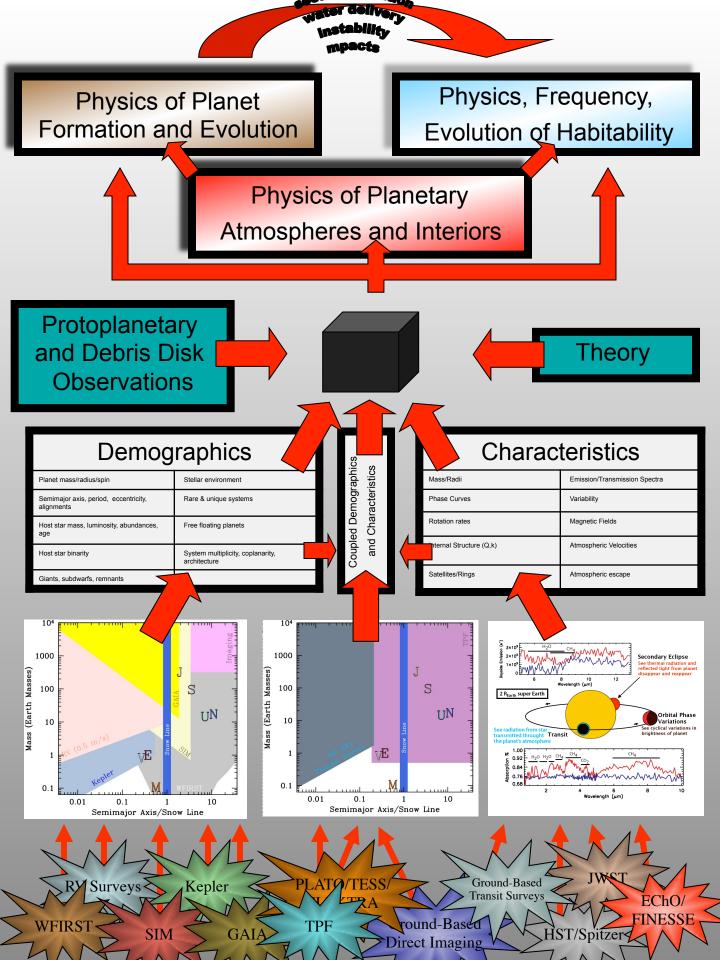
- Much better contrast to their host stars at MIR (10^7 vs 10^10).
- Many MIR (& NIR) molecular features to characterize their atmosphere, especially biomarkers H2O and O3 (and CO2).
- Less extinction for possible embedded planets (in the first core).
- Recent great advances in IR (even MIR) detectors and their readout systems.

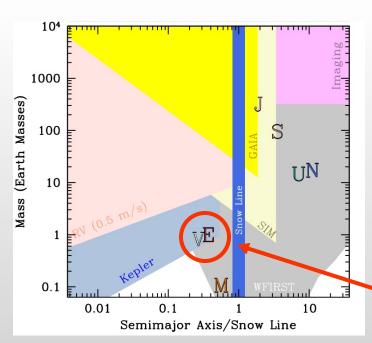
Why not IR? (compared with OPT)

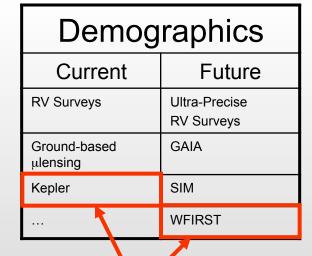
- Poorer resolution; need larger telescope aperture or baseline.
- High background and Earth atmosphere; need space mission.
- Therefore, the only feasible mission is space IR interferometer; but still technically challenging; so after OPT mission?

Task from Chas: Science Issues for direct imaging (IR) on Earth-like Planets: 2

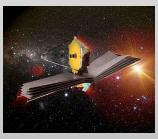
Tamura's inputs

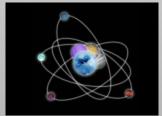

Goal

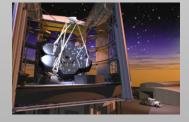

- In spite of knowing diversity of exoplanets, we are (at least I am) "most" interested in the Sun-Earth analog (how frequent and life there or not).
- HZ planets around M stars can be done w/ coming telescopes.
 - JWST's or SPICA's transit spectroscopy of Super-Earths around M stars.
 - TMT's (or E-ELT) direct imaging of habitable planets around M stars (SEIT; Matsuo, Tamura, Murakami, Kotani)
- But direct imaging at OPT or IR is the only viable way for "characterizing" habitable planets around G stars.
- Resolving planets need another technical leap; so our next goal should be the above.


Task from Chas: Science Issues for direct imaging (IR) on Earth-like Planets: 3

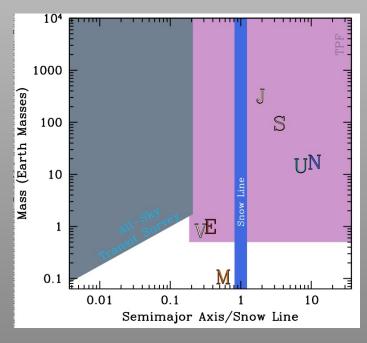
Tamura's inputs


- More general interest
 - Comparative exoplanetology including both habitable and non-habitable (all rocky) planets, based on characterization, not simply on statistics.
 - Then, extension for various host stars (mass, age, metalicity)
 - Important questions
 - Origin and evolution of liquid water
 - Evolution of atmospheres
 - New types of planets
 - Not conflict with general astrophysics
 - ✓ high resolution IR astronomy merits to all fields.
 - ✓ Not only astronomy but also planetary-science, physics, Astro-Bio

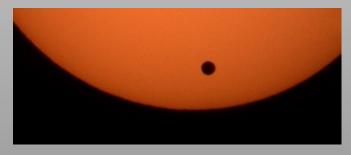




Habitable Planets nadir of detection sensitivity

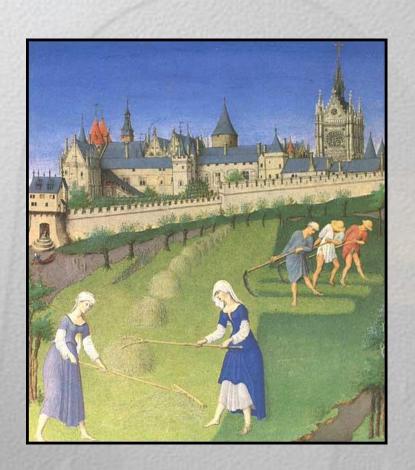


Characteristics					
Current	Future				
Ground-based Transit Surveys	VLTs				
Ground-based Follow-Up	JWST				
Spitzer	ECHO/FINESSE				
HST	?				

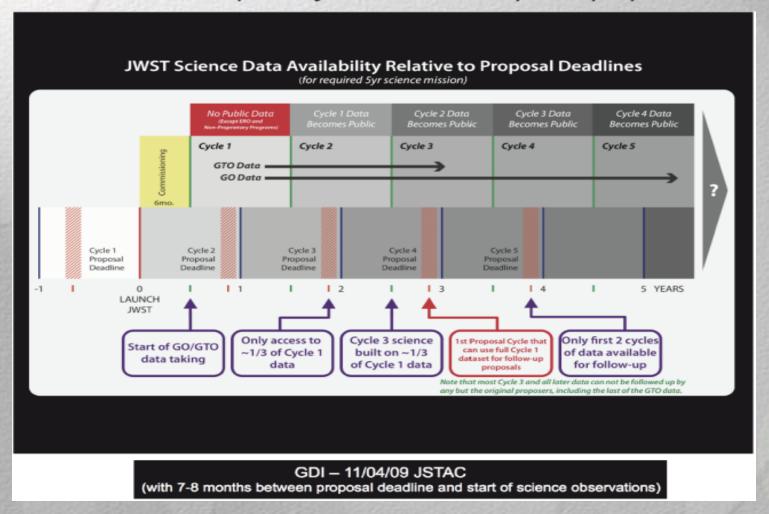

Demographics + Characteristics							
Current	Future						
Ground-Based Direct Imaging	PLATO/TESS/ ELEKTRA						
	TPF						

Habitable Planets

	High	Mass	Low Mass		
	Frequency	Habitability	Frequency	Habitability	
Current	Kepler		RV	MEarth	
Future	RV WFIRST	RV? SIM? TPF	MEarth TESS ASTRO PLATO	TESS ELEKTRA JWST VLT	



"Pale Blue Dot"


"Small Black Shadow"

Exploiting JWST for the Exoplanet Community Neill Reid, STScI

The JWST data release timeline

JWST will be an extremely complex telescope with complex instrumentation. With a 12-month proprietary period, JWST Cycle 1 data is not fully available to the community until just before the Cycle 4 proposal deadline.

Getting ready for JWST

- JWST is a limited lifetime mission
 - 5-year requirement, 10-year goal
- Astronomical community needs to hit the ground running
- Accelerate Data Access
 - Early Release Observations will be non-proprietary very limited
 - ◆ Early Release Science program DD program on scale 200-800 hours
 - Provide observations in representative set of instrument modes
 - Targets chosen in consultation with community & publicised
 - STScI will encourage limited or null proprietary times for large programs
- Exoplanet community needs to organise itself
 - Take advantage of existing missions
 - ◆ HST ~\$25-28 million/year available in grant funding
 - If you want to increase your share, you need large programs
 - ◆ Chandra ~\$11 million/yr
 - Herschel, [Spitzer], Kepler ~\$6 million/yr total
 - ◆ SOFIA
 - Help identify potential targets
 - Simulations of JWST datasets
 - Develop coordinated programs

Status of our subject is good scientifically – 4-5 exomissions flying: MOST, SPITZER, CoRoT, Kepler, HST
Status of international collaboration is good

Status of new space missions

- JWST is delayed at least 4 5 years
- SPICA (?)
- EUCLID (?) and WFIRST are in the 2020:ties
- TESS & ELECTRA?
- PLATO (?) 2018 N.B. PLATO and EUCLID to be confirmed in October
- ECHO (in M3 study) 2020:ties

International collaboration is fine on JWST, SPICA and officially non-existent on the rest.

Contacts between PLATO Consortium and Brazil, US scientists ongoing More need to be done!