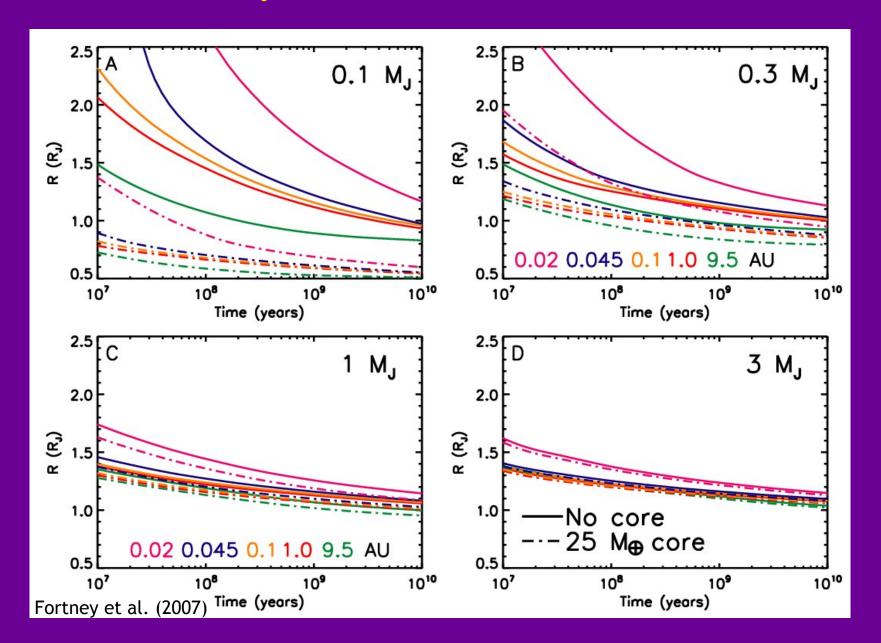

The Heavy Element Mass of Giant

Exoplanets


arXiv:1105.0024

Neil Miller University of California, Santa Cruz

Thanks to: Jonathan Fortney (UCSC), Eric Lopez (UCSC)

At Gyr ages, $\sim 1.3 R_{\rm J}$ is the largest radius of a standard cooling model

Evolution of "51 Pegasus b-like" planets

T. Guillot¹ and A. P. Showman²

THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES

ANDREW N. YOUDIN AND JONATHAN L. MITCHELL²

¹ Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 3H8, Canada
² Department of Earth & Space Sciences and Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, 595 Charles Young East Drive, Los Angeles, CA 90095-1567, USA
Received 2010 June 8: accepted 2010 August 2; published 2010 September 7

ON THE TIDAL INFLATION OF SHORT-PERIOD EXTRASOLAR PLANETS¹

Peter Bodenheimer, 2 D. N. C. Lin, 2 and R. A. Mardling 2,3

Received 2000 May 17; accepted 2000 October 11

OBLIQUITY TIDES ON HOT JUPITERS

JOSHUA N. WINN¹ AND MATTHEW J. HOLMAN
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
Received 2005 May 13; accepted 2005 June 20; published 2005 July 15

The effect of evaporation on the evolution of close-in giant planets

I. Baraffe¹, F. Selsis², G. Chabrier¹, T. S. Barman³, F. Allard¹, P. H. Hauschildt⁴, and H. Lammer⁵

THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

PHIL ARRAS¹ AND ARISTOTLE SOCRATES²

Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA; arras@virginia.edu
² Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA; socrates@ias.edu
Received 2009 August 7; accepted 2010 February 16; published 2010 April 6

Explaining Large Radii

POSSIBLE SOLUTIONS TO THE RADIUS ANOMALIES OF TRANSITING GIANT PLANETS

A. Burrows, ¹ I. Hubeny, ¹ J. Budaj, ^{1,2} and W. B. Hubbard ³
Received 2006 December 22; accepted 2007 February 9

An area of active research!

HEAT TRANSPORT IN GIANT (EXO)PLANETS: A NEW PERSPECTIVE

GILLES CHABRIER AND ISABELLE BARAFFE^{1,2}

Received 2007 March 6; accepted 2007 March 28; published

TWO CLASSES OF HOT JUPITERS

Brad M. S. Hansen¹ and Travis Barman² Received 2007 June 20; accepted 2007 August 23

TIDAL HEATING OF EXTRASOLAR PLANETS

Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 Received 2007 December 5; accepted 2008 February 12

INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS

N. MILLER¹, J. J. FORTNEY¹, AND B. JACKSON²

Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; neil@astro.ucsc.edu, jfortney@ucolick.org

Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA; bjackson@lpl.arizona.edu

Received 2009 May 4; accepted 2009 July 6; published 2009 August 21

COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS

LAURENT IBGUI AND ADAM BURROWS

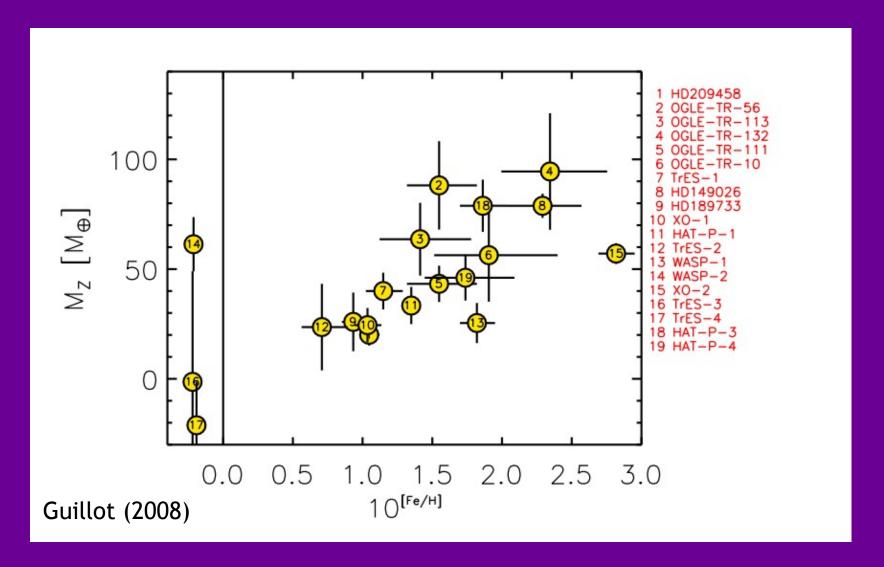
Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA; ibgui@astro.princeton.edu, burrows@astro.princeton.edu
Received 2009 February 20; accepted 2009 June 4; published 2009 July 17

INFLATING HOT JUPITERS WITH OHMIC DISSIPATION

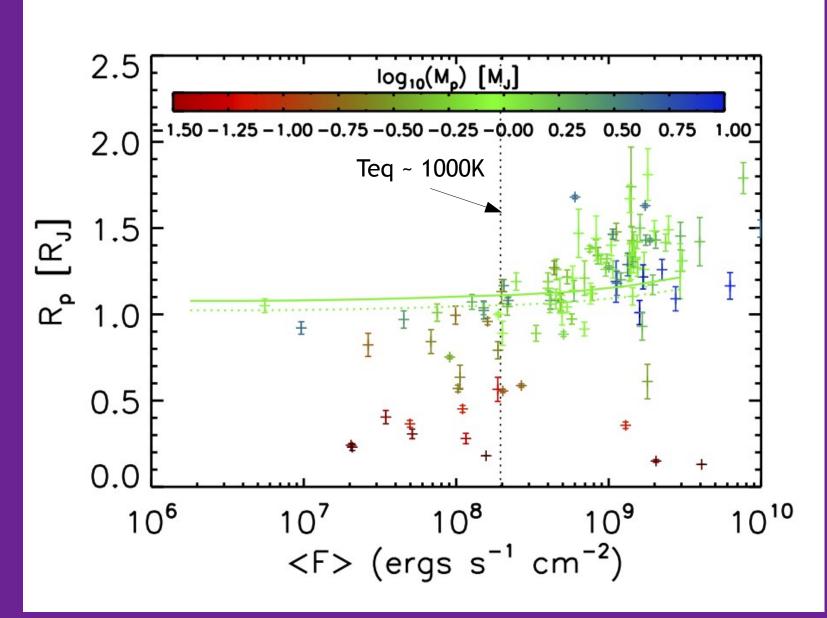
KONSTANTIN BATYGIN AND DAVID J. STEVENSON

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; kbatygin@gps.caltech.edu Received 2010 February 18; accepted 2010 March 23; published 2010 April 15

Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity

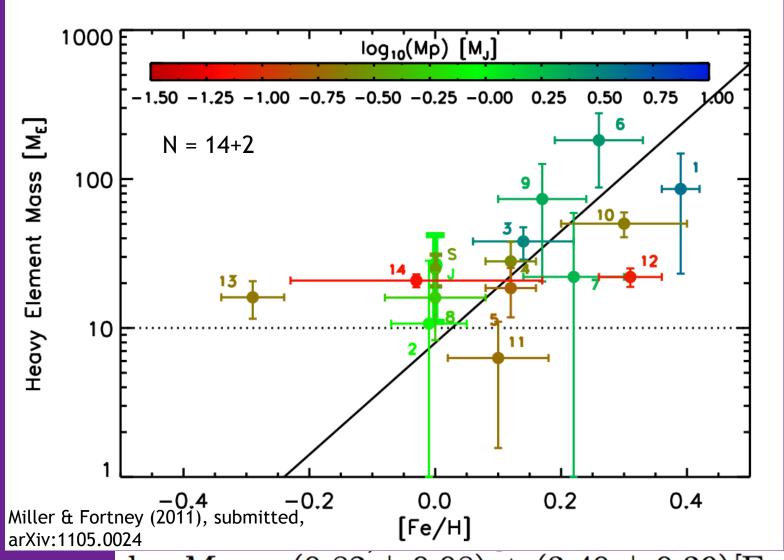

Jérémy Leconte¹, Gilles Chabrier¹, Isabelle Baraffe^{1,2}, and Benjamin Levrard¹

Inflated hot Jupiters from merger events

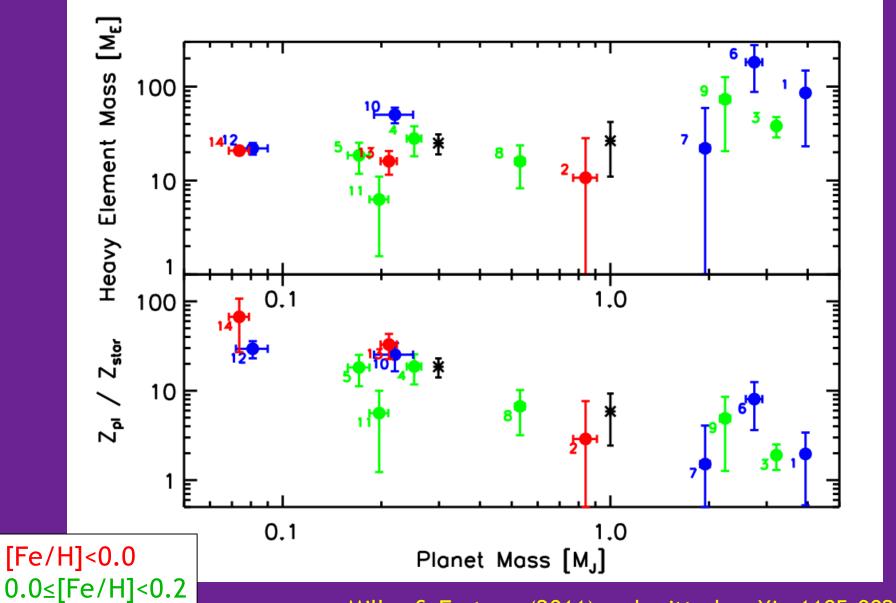

E. L. Martin¹, H. C. Spruit²

Assuming 0.5% of stellar flux heats the interior ...

The planet heavy mass can be inferred



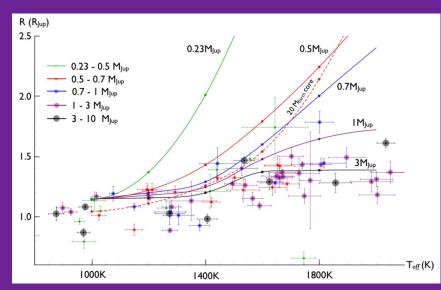
There is an emerging subpopulation of planets with no radius anomaly!


Miller & Fortney (2011), submitted, arXiv:1105.0024

A strong correlation between the star and planet abundances

See also, Guillot et al. (2006,2008) $\log M_Z = (0.82 \pm 0.08) + (3.40 \pm 0.39)$ [Fe/H]

Even massive planets appear to be enriched!


 $0.2 \le [Fe/H] < 0.4$

Miller & Fortney (2011), submitted, arXiv:1105.0024

Conclusions

See the paper: arXiv:1105.0024

- Giant planets, as a class, are enriched in heavy elements
 - Enriched compared to their parent stars
 - Enrichment is a strong inverse function of mass, but with an apparent "floor" at high mass
 - The heavy element mass of an inflated planet could be estimated only from the planet's mass and stellar metallicity
 - With that in hand, its additional interior power could be constrained
 - Radius inflation mechanism can be studied vs. orbital separation and planet mass

Batygin et al. (2011)

- Massive planets and low-mass brown dwarfs should have structural and atmospheric abundance differences
- The population of low-irradiation planets is expanding rapidly,
 which will confirm or refute this relation

 Thanks for listening!