Observations of Exozodiacal Dust with the Keck Interferometer Nuller

Rafael Millan-Gabet Caltech/NExScI

G. Serabyn (Key Science project PI), B. Mennesson, W. A. Traub, K. Stapelfeldt, G. Bryden, M. M. Colavita, A. Booth – JPL R. K. Barry, W. C. Danchi, M. Kuchner – GSFC S. Ragland, M. Hrynevich, J. Woillez – Keck Observatory C. C. Stark – Carnegie Institution

Exploring Strange New Worlds Conference Flagstaff AZ May 1 – 6 2011

Why study debris disks?

- Time scales for debris disk evolution may help understand terrestrial planet formation (see e.g. Wyatt 2008).
- Use disk structure to infer the presence of unseen planets (e.g. Wolf 2007, Stark & Kuchner 2008). Some have now been seen (HR8799 - Marois 2008, Fomalhaut - Kalas 2008).
- Knowledge of exozodi levels and structure is needed in order to properly design future terrestrial planet finding/imaging missions (see e.g. Exoplanet Community Report 2009, Exoplanet Task Force report Lunine 2008, Astro2010):
 - True for both vis coronographs and IR interferometer concepts.
 - Knowledge of the exozodi levels for all candidate stars would allow a greatly optimized instrument and strategy design.
 - Another problem: distinguish planets from disk blobs.
- Note: imaged Kuiper disks show rich morphology variety
 not a good idea to extrapolate to exozodi regions ...

The Keck Interferometer Nuller – Key Aspects

- Spectral band: $8 13 \mu m$, $\lambda eff = 8.5 \mu m$.
- Double-nuller architecture:
 - In order to deal with thermal background.
- Long baseline fringes
 - Accommodate large DR between star and surrounding dust.
 - Provide sensitivity to inner dust: 0.1 AU (at 10pc).
- Short baseline fringes:
 - Allow detection in presence of large IR background.
 - Also, provides accurate flux normalization.
- Results in well calibrated measurement (e.g. sub-% accuracy in equivalent fringe visibility, much better than standard Michelson MIR interferometry).
- FOV: from 0.1 AU to ~4 AU at 10 pc (limited by half-aperture PSF and short baseline fringes).
- Limiting flux: 1.5 Jy at N band.

Instrument details: Colavita 2009, 2010.

What the KI Nuller Measures

Measured normalized "Leak":

$$L = \frac{F_{at null}^{transmitted}}{F_{at peak}^{transmitted}} \begin{cases} = 0 \ if \ no \ zodi \ dust \\ > 0 \ otherwise \end{cases}$$

Typical accuracy:

$$\sigma_L = 0.003 \ (0.3\%)$$

Convert to Number of Zodis

$$(measured \ Leak - stellar \ Leak) \approx \frac{\iint Zodi_Brightness*(KINPattern)null}{\iint Star_Brightness*(KINPattern)peak}$$

- Compute and subtract stellar leak from the data (introduces small ~10⁻⁴ error, compared w. larger uncertainty in calibrating stellar spectrum in spectro-photometric techniques).
- Use ZODIPIC (Kuchner, GSFC) to generate an image of an analog of the solar system zodi around each target, for a given disk inclination and P.A.
- Scale the number of zodis until the predicted leak matches the measured net leak.
- This must be done for *each individual observation*, because the conversion to nzodis depends on the H.A.-dependent KIN fringe pattern (projected baseline length & orientation).
- Average observations and clusters in "zodi space", propagating formal and external errors.
- Repeat for range of dust disk orientations {inc,PA}. The resulting variability is taken as an additional uncertainty (small).

Results: Individual Stars

- 25 stars observed
 - 2 "high dust" ("Kuiper dust": η Crv, γ Oph).
 - 23 no known dust.
- 1 clear detection:
 - $-\eta$ Crv: z=1250 ± 260
 - Spectrum has adequate S/N, Si feature observed => follow up work.
- 2 possible detections:
 - γ Oph: z=200 ± 80
 - a Aql: $z=600 \pm 200$
- 22 non-detections: derive exozodi upper limits.

Average 1_o error

160 zodis

Name	$z \pm \sigma_z$	$\chi = \frac{z}{\sigma_z}$	3α Upper Lim
Detections			
η Crv	1246 ± 257	4.8	
Possible detecti	ons		
γ Oph	198 ± 77	2.6	429
α Aql	573 ± 191	3.0	1146
Non-detections			
107 Psc	107 ± 192	0.6	683
1 Ori	43 ± 48	0.9	187
47 UMa	67 ± 187	0.4	628
61 Cyg A	143 ± 194	0.7	725
70 Oph	67 ± 159	0.4	544
HIP 54035	-227 ± 179	-1.3	537
β Com	237 ± 245	1.0	972
β Vir	-9 ± 214	-0.0	642
χ-1 Ori	-60 ± 128	-0.5	384
δTri	-380 ± 191	-2.0	573
γ Lep	-80 ± 84	-1.0	252
γ Ser	-171 ± 89	-1.9	267
ι Peg	-169 ± 111	-1.5	333
ι Per	-281 ± 139	-2.0	417
ι Psc	-84 ± 106	-0.8	318
κ-1 Cet	-115 ± 172	-0.7	516
KX Lib	469 ± 341	1.4	1492
λAur	368 ± 190	1.9	938
NSV 4765	-564 ± 262	-2.2	786
τ Βοο	151 ± 101	1.5	454
θ Per	-54 ± 111	-0.5	333
v And	-72 ± 166	-0.4	498
		Average	567

Mostly FGK stars

Table 5

Results: Population

- 23 stars not previously known to have zodi dust.
- If these stars represent a population from the point of view of warm exozodi emission; and if the measurements are uncorrelated:
- mean: $z = +2 \pm 50$.
- Mean exozodi level for the class: < 150 zodi (3σ).

Current knowledge on MS stars zodi level

- From Spitzer observations of nearby MS stars (e.g. Trilling et al. 2008, Lawler et al. 2009)
 - 16.4 $^{+2.8}\text{-}_{-2.9}$ % have a detected 70 μm excess (out of 225 sun-like FG stars): rather KB than zodi analog
 - 11.8 +/- 2.4 % have a 32 μm excess (out of 203 FGKM stars, using 3 σ excess= 6% \sim 100 zodis)
 - 4.2 $^{+2.0}_{-1.1}$ % have a 24 μ m excess (out of 213 FG stars, 3 σ excess =10%)
 - 1+/- 0.7 % have a 10 μ m excess (out of 203 FGKM MS stars, 3 σ excess= 3% ~ 1000 zodis)
 - Excess rates statistically indistinguishable between A, F, G and K stars
- From 10 μ m KIN observations of 23 nearby AFGKM stars with no Spitzer excess (this work)
 - 1 star shows a ~1% excess within 2 AU, at $3\sigma = 600$ zodis.
 - Suggests 99% of such stars have zodi levels < 150 zodis
- From NIR interferometric observations of 40 MS AFGK stars (Absil et al.)
 - 10 stars show an excess at the \sim 1% level, (origin remains unclear)
 - Excess rate seems to decrease vs spectral type (small statistics)
 - Nine of them observed by MIR nulling interferometry (KIN, MMT): only 1 shows significant 10 micron excess emission imputable to a debris disk (e.g. Stock et al. 2010)

Conclusions & Future work

THE ASTROPHYSICAL JOURNAL, 733:1 (16pp), 2011 ??? © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A

EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER

R. MILLAN-GABET¹, E. SERABYN², B. MENNESSON², W. A. TRAUB², R. K. BARRY³, W. C. DANCHI³, M. KUCHNER³, S. RAGLAND⁴, M. HRYNEVYCH⁴, J. WOILLEZ⁴, K. STAPELFELDT⁵, G. BRYDEN⁵, M. M. COLAVITA⁵, AND A. J. BOOTH⁵

- Encouraging results for future direct exoplanet imaging missions.
- But limits measured still may imply higher levels than can be tolerated.
- Need 10-100x (?) better measurements.
- LBTI goal: 80 stars down to 10 zodis (1σ) .
- Do we need to know about 1-zodi levels?
- A dedicated sub-orbital or space mission?
- Still need to solve the problem of dealing with disk inhomogeneities.
 - Direct characterization of morphologies, or address with appropriate observing mitigation strategy?

