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M-dwarfs as planet hosts

- Tarter et al. 2007 and Scalo et al. 2007 recommended
M-dwarfs as best targets to search for exo-Earths.
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|dea confirmed by discovery of over 20 planets

around M-dwarfs, e.qg. GJ 436b (Butler et al. 2004)
and GJ 1214b (Charbonneau et al. 2009)



Can planets around M-dwarfs be habitable?

1) M-dwarfs are more Planets will be exposed
active than Sun-like stars to denser winds
2) M-dwarfs’ Habitable Zones Planets are tidally locked, are
are 10 times closer to the in synchronous rotation and
star than for Sun-like stars have weak magnetic moments
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Can planets around M-dwarfs be habitable?

1) M-dwarfs are more Planets will be exposed
active than Sun-like stars to denser denser winds

2) M-dwarfs’ Habitable Zones Planets are tidally locked, are
are 10 times closer to the in synchronous rotation and
star than for Sun-like stars ve /weak magnetic moments

The rotation of the planet is
not necessarily synchronized
to the star if the planet’ s orbit
is eccentric (Correia et al. 2008; Yes, but maybe not as
Barnes et al. 2009) weak as we thought.




Planetary Science-Astronomy need more communication
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Exo-Earths magnetic moment models using 0C2006
M~ 4m I"03 Y (50 l‘lo)l/z (F D)1/3

= Magnetic moment

= planetary core radius

Y = fitting coefficient (=0.1-0.2)

= bulk density of fluid in convective zone
= magnetic permeability of vacuum

F = average convective buoyancy flux

D = thickness of the convection cell
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- r; /D decreases with age
- we currently do not know how F changes with age
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- If Ro, > 0.1=——= F generates multipolar dynamo
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F as a function of planetary rotation rate
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1 F for the most efficient dynamo,

i.e. F cr,2 , which corresponds
to D = 0.65 r, (Heimpel et al. 2005).
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107 Depending on the rotation rate
of the planet and its core radius,
the most efficient dynamo for
the planet can be either a dipole

or a multipole.

Convective heat flux (

- For fast rotators ——p dipole
- For slow rotators = multipole
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** core radii range equivalent to 0.5 -12 M__, planets,
assuming same interior composition as Earth.




Exo-Earths interior models

o(r) = 3—/l)“(l —2¢) (Cy (1 = Te) + Cy(e — 9/2¢?))

£ = 1/2 (l — /) //)(] '), 1 = 3 ]{5'(% (12 = 9]\'5() (—1 — [\"g‘())

Additional assumptions: D=0.65r, and r,/r, = 0.35
and F is constant with time.

ORNT . | Region  Materials po (kg m3) K, (GPa) Kso'

Core Pure iron (Fe) 8300 160.2 5.820
Core Iron alloy (FeS) 7171 150.2 5.675
Mantle  Pure olivine 3347 126.8 4.274
(Mg, sFe;,Si0,)
& Mantle  Perovskite + 4152 233.6 4.524

Ferropericlase
(Mg sFeq1Si0;
+ Mg, 5Fe,,10)




Radius-Density Profiles
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Earth (from PREM; Dziewonski et al. 1981)

Olivine mantle + iron alloy core
- == == = Olivine mantle + pure iron core

Perovskite-ferropericlase mantle + iron alloy core
== == == = Perovskite-ferropericlase mantle + pure iron core



Our magnetic moment estimate for exo-Earths
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Planets in the Habitable Zone of M-dwarfs

-Q0~0.01-0.02 Q_,,, for 0.5 M, star. O Solution for F,,_, generating dipole (O&C 2006)

-0~0.24 - 0.41 Qqyyyy for 0.1 Mg, star. |V Solution for F oc r2 , multipole = 5 X 102 Mg,

sun
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Note that core radii range is equivalent to 0.5 -12 M,
planets, assuming same interior composition as Earth.




Summary

- The magnetic moment of a planet depends on its rotation rate, but also, on its
chemical composition and the efficiency of convection in its interior (F)

- If a planet is rotating ‘fast enough’, Q only marks if the dynamo is dipolar or
multipolar, but magnetic moment strength will not explicitly depend on rotation.

- Some rocky planets might have strong magnetic fields, and therefore their
surfaces will be protected against stellar and cosmic irradiation.

- In the particular case of planets in the habitable zone of M-dwarfs, even the

slowest rotators might have magnetic dipolar moments stronger than Earth, and
therefore have a strong enough magnetic field to shield their surface. This is most

likely, however, for planets with r, 2 r, -

CAUTION:
- Our current models do not account for changes of F and D with age (See poster H.08)

- Planets under extreme conditions, i.e. highly inhomogeneous heating or under
very strong stellar winds, will have their magnetic field affected.

-This is still work in progress and a better understanding of the interior structure
and energy transportation mechanisms in rocky planets is still necessary.



