Origin of Hot Jupiters

Yoram Lithwick (Northwestern U.) Yanqin Wu (U. of Toronto)

Hot Jupiters

Semi-major axis distribution of planets > 0.1 M_Jup

• - 1% of FGK stars have hot Jupiters

• How did Jupiters migrate from >1 AU to < 0.1AU?

 A New Migration Mechanism: Secular Chaos (Wu & Lithwick 2011)
Start with a few Jupiters beyond an AU, on widely-spaced, mildly eccentric & inclined orbits

focus on secular (i.e. orbit-averaged) interactions.
Okay if no close encounters or strong resonances.

 A New Migration Mechanism: Secular Chaos (Wu & Lithwick 2011)
Start with a few Jupiters beyond an AU, on widely-spaced, mildly eccentric & inclined orbits

focus on secular (i.e. orbit-averaged) interactions.
Okay if no close encounters or strong resonances.

 A New Migration Mechanism: Secular Chaos (Wu & Lithwick 2011)
Start with a few Jupiters beyond an AU, on widely-spaced, mildly eccentric & inclined orbits

focus on secular (i.e. orbit-averaged) interactions.
Okay if no close encounters or strong resonances.

A New Migration Mechanism: Secular Chaos

secular interactions can lead to chaos

• e.g., terrestrial planets' orbits driven by secular chaos

An Example N-body Simulation

• Initial conditions:

a(AU)	ecc.	inc. (deg)	mass (Mjup)
Ι	0.12	IO	0.5
4	0.12	5	IO
IO	0.12	5	5

Secular Instability

Secular Instability

Inner planet

• Inner planet can reach high eccentricities & inclinations, given enough time

Secular Instability

When inner planet acquires high e,

• pericenter approaches star

 ● tides raised by star can circularize planet
⇒ hot Jupiter

● Inner planet has smallest "inertia" ⇒ most likely to be excited

• Note also: remaining planets "cooled"

Another system (with tides & GR)

constant $a \Rightarrow$ secular

16AU,e=0.33, inc=8 deg, 1.5 MJ

Similar to Mercury's orbital chaos

(Laskar & Gastineau `09)

Lithwick & Wu (2011)

Has it really happened?

Michtchenko & Malhotra '04 Migaszewski & Gozdziewski '08,'09

Comparison with Observations					
observation		explanation			
3-day pile-up	~	gradual e-growth (timescale > 10 ⁶ yrs) + tidal dissipation			
range of stellar obliquities (R-M)	1	excite both e and i			
lack of close companions	~	predict: no TTV for hot Jupiters more Jupiters beyond a few AU			
Masses lower than average	1	easier to excite low mass planets			

Also predict that fraction of hot Jupiters increases with stellar age \Rightarrow no hot Jupiter around T Tauri

observation					
	secular chaos	disk migration	Kozai migration	planet scattering	
3-day pile-up	\checkmark	X ?	\checkmark	X	
range of stellar obliquities (R-M)	~	X ?	~	~	
lack of close companions	\checkmark	×	~	~	
Masses lower than average	\checkmark	^.	×	X	
			Also, cannot produce frequency of hot Jupiters (Wu et al.)	Also, initial conditions are artificial	

Secular chaos predicts $M \simeq M_J \left(\frac{\text{orbital period}}{1.9 \text{ days}} \right)^{-10/3}$

exoplanets.org | 5/4/2011 10 • Msin(i) [Jupiter Mass] 10 0.1 ¢ þ 0.01 1

Orbital Period [Days]