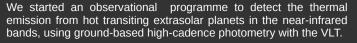
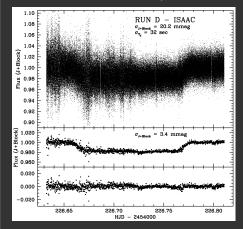


Fast-photometry ground-based NIR detection of the thermal emission from extrasolar planetary atmospheres

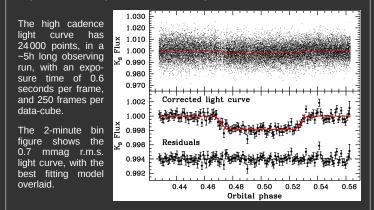


Claudio Cáceres^{1,2}, Valentin D. Ivanov², Dante Minniti¹, Adam Burrows³, Fernando Selman², Claudio Melo², Dominique Naef⁴, Elena Mason⁵, Grzegorz Pietrzynski⁶


> ¹ P. Universidad Católica de Chile, ² European Southern Observatory, ³ Princeton University, ⁴ Observatoire de Genève, ⁵ ESA-STScl, ⁶Universidad de Concepción

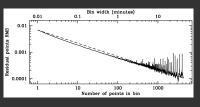
> > Contact: cccacere@astro.puc.cl

The observation of the occultations of transiting extrasolar planets is a powerful tool to detect the thermal emission from the atmosphere of the planet, and to constrain its physical parameters. We developed a fast-photometry high-cadence near-IR method with ground-based telescopes able to detect the thermal emission from the atmospheres of hot extrasolar planets. We present the application of this method to the highly irradiated planet WASP-4b, with the significant detection (>10 σ) of the occultation of the planet, whose atmosphere emits thermal radiation with an associated brightness temperature of 2000K, and shows an absence of a strong thermal inversion and an extremely inefficient redistribution of heat from the day-side to the night-side of the planet.

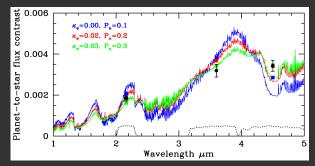

We use the *Fast-Phot* mode of ISAAC@UT3, which produces a series of data-cubes, with zero dead time between exposures, and allow to observe with short exposure times.

The high-cadence Jband photometry of the primary transit of the exoplanet XO-1b, taken under poor weather conditions, that has been used for a Transit Timing Variations analysis.

The light curve consists around 200 000 of points (1900 frames per data-cube), obtained over an interval of ~4.5h, and with an integration time per frame of 0.08 sec., implying a near-complete sampling of the transit (Caceres et al. 2009).


The highly irradiated planet WASP-4b is the first target we applied this method. We obtained a high-cadence light curve of this planet during its occultation phase, obtaining a significative detection of its day-side thermal emission at 2.16μ m, with a fractional eclipse depth of 0.185% (Cáceres et al. 2011).

References


Beerer et al. 2011, ApJ, 727, 23. Burrows et al. 2008, ApJ, 678, 1436. Cáceres et al. 2009, A&A, 507, 481. Cáceres et al. 2011, A&A, 530, A5. The rednoise could play an important role in the determination of the occultation parameters for infrared observations.

The effect of rednoise in the obtained fast-photometry of the planet WASP-4b. A small contribution from correlated noise comes from binning values of the order of ten of minutes.

The calculated fractional depth implies that the day-side atmosphere of WASP-4b emits thermal radiation compatible with a brightness temperature of 2000 K.

Specific atmosphere models for WASP-4b, compatible with our measurement and two Spitzer mid-infrared detections (Beerer et al. 2011), suggest an absence or a very weak presence of a thermal inversion in its atmosphere, and an extremely inefficient redistribution of heat from the day-side to the night-side of the planet.

The models are parametrized by the redistribution factor P_m and the opacity of an extra absorber in the upper atmosphere of WASP-4b κ_e (Burrows et al. 2008, and references therein).

Our high-cadence ground based observations allows to detect the minute thermal emission from some extrasolar planets.

The near-infrared observations of transiting planets represent a valuable complement to the mid-infrared space-based detections. Further observations of other southern targets would contribute to the characterization of the atmospheric properties of extrasolar planets.

Acknowledgements

Acknowledgements This work is supported by ESO, SOCHIAS, by BASAL Center for Astrophysics and Associated Technologies PFB-06, by FONDAP Center for Astrophysics 15010003, and by Ministry for the Economy, Development, and Tourism's Programa Inicativa Científica Milenio through grant P07-021-F, awarded to The Milky Way Millennium Nucleus. A.B would like to acknowledge support in part by NASA grant NNX07AG80G and through JPL/Spitzer Agreements 1328092, 1348668, and 1312647.