Unlocking the Rocky Exoplanet Interior-Atmosphere Connection via Laboratory Experiments

Maggie Thompson^{1,2}

Paolo Sossi², Dan Bower², Anat Shahar³, Sylvain Petitgirard², Meng Tian⁴

¹NASA Sagan Fellow, Earth and Planets Laboratory, Carnegie Institution for Science
 ²Experimental Planetology Group, Institute of Geochemistry and Petrology, ETH-Zürich
 ³Earth and Planets Laboratory, Carnegie Institution for Science
 ⁴University Observatory Munich, Ludwig-Maximilians-University

NASA Hubble Fellowship Program NHFP Symposium Caltech, Pasadena, CA September 16, 2024

PLANET DLOGY

Magma Worlds: Near-Term Windows into Rocky Exoplanet Diversity

- Magma planets: extensive lava or magma oceans at their surfaces
- Observational advantage: short orbital periods and bright day-side fluxes in infrared light
- M. Thompson 2024 NHFP Symposium

Formation of Rocky Planet Atmospheres

Primary Atmospheres

Form via capturing H₂-rich nebular gas

Secondary Atmospheres

Form via outgassing during planetary accretion and later through subsequent tectonic processes

Hybrid Atmospheres

Combination of residual primary atmosphere and outgassing

Tian & Heng 2023

What Controls the Mass and Composition of Hot, Rocky Planet Atmospheres?

Magma planet atmospheres depend on:

- Rocky precursor material
- Solubilities of major gas species in the magma $\longrightarrow \chi_i = \alpha P_i^\beta$

 $\begin{aligned} \chi_i &= \text{Mole fraction of species} \\ i \text{ dissolved in melt} \\ \alpha &= \text{Solubility constant} \\ P_i &= \text{Partial pressure of } i \text{ in} \\ \text{atmosphere} \\ \beta &= \text{Stoichiometric coefficient} \end{aligned}$

*There is currently limited experimental data on solubilities of major atmosphere-forming gases in a range of magma compositions relevant for exoplanets

of Atmosphere Is Magma Ocean

H₂ Solubility and the Influence of Primary Atmospheres for Magma Planets

• Accreting planets can form primary atmospheres if the planet mass is large enough and the atmospheric H₂ can dissolve into the magma ocean

Source of Earth's Water?

•Earth's water may have originated from reactions between oxygen in the magma ocean and hydrogen in the nebular atmosphere

M. Thompson – 2024 NHFP Symposium

H₂ Solubility Experiments: Instrument and Set-Up

Samples Pre-Experiment

A Quenched Glass Sample Post-Experiment

H₂ Solubility Experiments: Spectral Analysis

8

H₂ Solubility Experiments: Spectral Analysis

Thompson et al. 2024 (in prep.)

3.75

4.00

2500

H₂ Solubility Experimental Results

H₂ Solubility vs. Melt Composition

Ways to Characterize the Melt Composition:

• Degree of Polymerization: Measure of how interconnected the silicate network is (i.e., how the Si-O tetrahedra link within the network)

→ Optical Basicity: Higher value indicates less interconnected, less viscous melt

$$\Lambda = \frac{\sum_{i} \chi_{i} m_{i} \Lambda_{i}}{\sum_{i} \chi_{i} m_{i}}$$
Where:
 χ_{i} = Mole fraction of oxide i
 m_{i} = Number of oxygen atoms of oxide i
 Λ_{i} = Optical basicity of oxide i

• **Ionic Porosity**: Measure of the amount of free space between ions in the melt (i.e., how open the structure is)

Thompson et al. 2024 (in prep.)

Effect of Temperature and Iron on H₂ Solubility¹²

Thompson et al. 2024 (in prep.)

Volatile Solubility and Outgassing Experiments with the Aerodynamic Laser Levitation Furnace + FTIR

Temperature: 1450 - 2500 °C (and even higher!)

Pressure: 1 bar

Aerodynamic Laser Levitation Furnace + FTIR

M. Thompson – 2024 NHFP Symposium

14

Aerodynamic Laser Levitation Furnace + FTIR

Atmodeller: Volatile Partitioning Code between Planetary Atmospheres and Interiors

Volatile speciation between melt and atmosphere is governed by composition, equilibrium chemistry between the gas species and their solubilities in the melt

Atmodeller:

- Computes chemical equilibrium conditions at the melt-atmosphere interface
- Includes:
 - Condensed phase thermodynamics
 - Effects of (compositional-dependent) volatile solubilities in the melt
 - Gas non-ideality at high pressures (~kbar/GPa)(i.e., real gas equations of state)

Bower, Thompson et al. 2024, In Prep.

Atmodeller: Effect of Solubilities on Atmospheric Composition

Key Take-Aways

Magma planet atmospheric compositions depend on: •Rocky material that composes planet •Solubilities of major gas species in the magma

M. Thompson – 2024 NHFP Symposium

- At 1 bar, H₂ dissolves in silicate melts as OH and solubility depends on melt composition (and maybe T)
- We need more experimental data on volatile partitioning between interior and atmosphere for diverse planetary melts

Atmodeller: Flexible framework to chemically connect planetary interiors and atmospheres

•The volatile inventory in the atmosphere is not necessarily representative of the interior

Extra Slides

Atmodeller: Sub-Neptunes, Non-Ideality at High Atmospheric Pressures

15

Atmodeller: Library of Solubility Laws and Real Gas Equations of State

Add your solubility laws and equations of state!

