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Accretion disk states

* XRBs and AGN can be found in various (spectral) states of accretion

High-soft state (most gas accretion): Hard-intermediate state (most energetic jets):
Thin cold disk with no jets Thin cold disk with hot "‘corona’ and jets
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Quiescent state (most BHs):
Thick hot torus with jets
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Accretion disk states

* XRBs (and maybe AGN) transition through various (spectral) states of accretion

Thin cold disk with no jets

High-soft state (most gas accretion):

Hard-intermediate state (most energetic jets):
Thin cold disk with hot "‘corona’ and jets
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Quiescent state (most BHs):
Thick hot torus with jets

Quiescent state

Hard-intermediate state (HIMS) | High-soft state (HSS)

Radiation Not important

Very important Very important

Computational cost 1

Physical understanding
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H-AMR: Unifying accretion on GPUs

* Solves radiative 2T GRMHD equations on a grid (Liska et al. 2022)

Features (3-dimensional) static and adaptive mesh refinement (SMR/AMR) capability

First GPU-accelerated GRMHD code and excellent scaling up to ~16000 GPUs

Increases computational efficiency by 5+ orders of magnitude in luminous disks (HIMS and HSS)

Led to discovery of fundamentally new accretion physics in HIMS and HS state (this talk)

log(p) at 114768 R,/c

Speedup compared to 20 core CPU

Quiescent state

HIMS and HSS

Base resolution

304 x 192 x 192

1680 x 576 x 1024

Effective resolution

304 x 192 x 192

13440 x 4608 x 8192

Block size 76 x 32 x 48 48 x 46 x 64
Grid outer radius 1507, 10°r,
Physical duration 10%r, /c 1.5x 10°r, /c
Hardware computational cost 18 GPU hours 3.8 x 10° GPU hours
System scale 1 V100 GPU 5400 V100 GPUs
Number of cells 9.2 x 10° 12-22 x 10°
Number of real zone-cycles 0.64 x 10" 1.7 x 10"
Number of effective zone-cycles 1.6 x 10" 1.5x 10"
Effective zone-cycles/s > 2.5 x 108/GPU > 1.1 x 108/GPU
LAT x GPU Speedup 71 31
SMR Speedup (#Timesteps) 1.17 33
AMR Speedup (#Cells) 1 35
AMR Speedup (#Timesteps) 1 53
Total Speedup 83 1.9 x 10°




Problem 1: Origin of quasi-periodic oscillations

* Low and high frequency quasi-periodic oscillations (QPOs) observed in luminous XRBs and AGN
* Bad news: Physical origin of QPOs (ubiquitous in luminous states) is unknown
* Good news: No-one simulated a misaligned disk in any of the luminous states ©

Low frequency QPOs come in d|fferent types
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Misaligned thin accretion disks tear

* First GRMHD simulation of a 65° tilted thin disk threaded by a toroidal field (Liska et al 2022)

* Demonstrates that precessing disks tear of in cycles (featuring ~5 precession periods)
* NEW result: Tearing radius (and precession frequency) depend on amount of magnetic flux!
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* Time scale incompatible with naive-estimate for accretion/viscous timescale
(Assuming that accretion is driven by magnetized turbulence ©)
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Problem 2: Origin of rapid AGN variability

* Some changing look” AGN show order-of-magnitude luminosity and spectral swings
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Shock formation in tilted luminous accretion disks

* First radiative 2T GRMHD simulation of a tilted disk radiating at L~0.35 Ly4 (Liska, Kaaz et al 2022)
* First demonstration of shock heated gas in luminous accretion disks in high-soft state

* Shocks don’t only lead to a different emission pattern, but also change how disks accrete
* See next slide

Vertical projection
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Nozzle shocks drive accretion (with Nick Kaaz)

* Nozzle shock drives rapid (and variable) accretion (Kaaz, Liska et al 2023)
* Challenges 30 year old paradigm of magnetized turbulence (MRI) driven accretion
* Observed variability consistent with luminosity swings in (changing-look) AGN

Nick Kaaz
Graduate student
Azimuthal slice of log(p) at r=10r, Northwestern U.

Nozzle shock
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Next step: Simulating *transitions™ between states

* Simulated all spectral states (quiescent, HIMS, and HSS) successfully with H-AMR
* Transitions between states still poorly understood (e.g. what drives them)

Thin cold disk with no jets

High-soft state (most gas accretion):

Hard-intermediate state (most energetic jets):
Thin cold disk with hot "‘corona’ and jets
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Quiescent state (most BHs):
Thick hot torus with jets

Quiescent state

Hard-intermediate state (HIMS) | High-soft state (HSS)

Radiation Not important

Very important Very important

Computational cost 1

103-10° 103-10°

Physical understanding _ Basic Basic
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Next step: Simulating *transitions™ between states

* First radiative GRMHD simulations of transition from quiescent state to HIMS
* Demonstrates that torus collapses into a thin accretion disk (Liska et al 2024)
* Structure of disk/corona depends on magnetic flux saturation

log[g/cm3])
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Next step: Simulating *transitions™ between states

* First radiative GRMHD simulations of transition from HIMS to soft state
» Demonstrates shrinking of truncation radius when magnetic flux is removed (Liska et al 2025 in prep)
* Jet also becomes order(s) of magnitude weaker as magnetic flux declines

- log(p) at 188932 R,/c log(p) at 188932 R,/c
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summary

* Leap in understanding of black hole accretion across the luminosity spectrum
* Disk tearing leads to disk and jet precession which might explain QPOs
* Shocks drive accretion in luminous spectral states (challenges MRI-turbulence driven accretion)

* Future looks exciting
* Fusion of H-AMR with GPU clusters such as FRONTIER will enable even more advanced simulations
* Wealth of new observational data will provide powerful benchmark for numerical models

HewletPackard
Entepise




