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Protoplanetary disks are the last stage when substantial reservoirs of primordial
molecular gas remain - ideal settings to study the chemical conditions during the
epoch ‘of planet formation, ‘

planetary' system - \\ |

protoplanetary disk

Credit: Bill Saxton/NRAO/AUI/NSF




Protoplanetary disks are the last stage when substantial reservoirs of primordial
molecular gas remain - ideal settings to study the chemical conditions during the
epoch ‘of planet formation, ‘

planetary' system - \\ |

protoplanetary disk

Planet formation is well underway and thus we can directly observe the
environments from which planets are actively assembling.




Few sulfur-bearing molecules detected in disks
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Few sulfur-bearing molecules detected in disks
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Few sulfur-bearing molecules detected in disks

Inorganic Nitriles and

Outstanding questions:

*  What is the underlying sulfur reservoir in disks?

*  Why have relatively few gas-phase S-bearing
molecules been detected?

* |sthe observed disk sulfur chemistry set by
inheritance or in situ disk processes!

* How does ongoing planet formation impact

sulfur chemistry?

ics

S molecules

H,S 7‘"’
9

Oberg+23
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Few sulfur-bearing molecules detected in disks

Simplest S-bearing species

cs ‘JJ and commonly detected

Detected in a handful of disks
and show unexpectedly high

abundances
*f’
H,CS

J
0 P Oxygenated species In young
¢ disks with accretion, large-

scale structures, or shocks



Teague+ 18

Bright but few multi-
line observations to
study excitation



Teague+ 18 Le Gal+21

Bright but few multi-  Weaker lines, fewer
ine observations to  detections, and not
study excitation well-spatially resolved



Teague+ 18 Le Gal+21 Garufi+22

H,CS 71¢-6,5 9O

Bright but few multi-  Weaker lines, fewer What is SO tracing (hot
ine observations to  detections, and not gas, shocks, outflows)?
study excitation well-spatially resolved



sulfur-bearing molecules provide uniquely powerful window into planet formation

Law+24, in prep. Yoshida, Nomura, CJL+24

CS |=4-3
E,=23.5K

mpossible protoplanet

mapping gas conditions in a identifying and characterizing
planet-hosting disk embedded protoplanets




sulfur-bearing molecules provide uniquely powerful window into planet formation
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planet-hosting disk embedded protoplanets




The planet-hosting HD 163296 disk

* Nearby (d = 101 pc) Herbig star
with an inclined disk
Fairlamb+ 15, Isella+ 1 6

mm dust

* Bright, gas-rich disk that likely hosts

at least one Jupiter-mass planet
e.g, league+ |8, Pinte+18, Law+2|

* Extensively studied, but to date,
very little data on sulfur emission
Le Gal+21

* However, there is a large amount of

ALMA and SMA archival data:
2015.1.00847.5 (Pl £ Du), 2015.1.01 137.5 (PI:T. Tsukagoshi),
2016.1.01086.5 (PLA. Isella), 2016.1.00884.5 (PI:V. Guzmdn),
2017.1.01682.S (Pl: G. Guidi), 202 1.1.00535.5 (PI:Y.Yamato),
2021.1.00899.5 (PI: K. Zhang), 2020A-5018 (PI:R. Le Gal)

Andrews+ | 8
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HD 163296

“1.3 mm cont.

Le Gal+21




CS J=10-9
E,=129.3 K

HD 163296
1.3 mm cont.




HD 163296

" 1.3 mm cont.

[SMA]

CS J=10-9

"|"E,=129.3K

4

most lines have an angular resolution of

~0.2-0.4 arcsec, or 20-40 aul
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HD 163296
1.3 mm cont.
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HD 163296
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109 Law+24, in prep. N\

Most comprehensive, multi-line CS data in a planet-forming disk to date!



10°L

HD 163296

N T.x=24.4112 K
\
\ \NT=5.53t8;§§><1012 cm* 3

A \’\
Lawtddinprep. T
40 80 120
E. (K)

1012

1011"

MA@ 116
CS

Le Gal+21

18 bl b

N 62 0 <10 cin -

1010
0

4:0
Ey (K)

Most comprehensive, multi-line CS data in a planet-forming disk to date!



Spatially-resolved sulfur chemistry

* Four CS lines at 35 au-
resolution allow spatially-
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Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density

CS 85

beam

Norm. Intensity + offset
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Law+24, in prep.



Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
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* Ring contrast increases
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Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density

two rings

§ CS 85 |107

v beam

o

+

>

d

©

-

Q

-

k=

g

(@] -

ZOO."'l(')O""Z(')o 10 |0*

Eu Ncrit

R (au) () (cm3)

Law+24, in prep.



Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density

* Sub-thermal excitation in
the 85 au gap matches
non-LTE predictions

two rings
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Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density

* Sub-thermal excitation in
the 85 au gap matches
non-LTE predictions

—

40

30

v
20

T

10

N = 2
cS
CHS
50 100 150 200 250
R (au)

Law+24, in prep.



Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density
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Spatially-resolved sulfur chemistry

e Four CS lines at 35 au-
resolution allow spatially-
resolved excitation

* Ring contrast increases
with E, and critical density

* Sub-thermal excitation in
the 85 au gap matches
non-LTE predictions

* Independent inference on
gas density ny is consistent
with a ~ 1 M, planet!
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Sulfur isotopic ratios

* Can map out column density profiles for all molecules and measure isotopic ratios
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Sulfur isotopic ratios

* Can map out column density profiles for all molecules and measure isotopic ratios

o 325/31S ratio = 2-5, which indicates a significant **S enhancement from the ISM ratio of ~22
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Sulfur isotopic ratios

* Can map out column density profiles for all molecules and measure isotopic ratios

o 325/31S ratio = 2-5, which indicates a significant **S enhancement from the ISM ratio of ~22
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Sulfur fractionation in HD 63296
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sulfur-bearing molecules provide uniquely powerful window into planet formation

Law+24, in prep. Yoshida, Nomura, CJL+24

CS J=4-3
E,=23.5K

mpossible protoplanet

mapping gas CohditiQHS na identifying and characterizing
planet-hosting disk embedded protoplanets




sulfur-bearing molecules provide uniquely powerful window into planet formation

Law+24, in prep. Yoshida, Nomura, CJL+24

CS J=4-3
E,=235K

Tomohiro Yoshida

PhD StUdent at the '  3 .possmle protoplanet
* National Astronomical "
Observatory of Japan

mapping gas CohditiQHS na identifying and characterizing
planet-hosting disk embedded protoplanets




Chemical signatures of embedded planets in disks

Heating near Jupiter-mass planet

emission lines (e.g.,12CO) M : 9
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The planet-hosting HD 169 142 disk

* Nearby (d = |15 pc) Herbig star

with a face-on disk
Blondel & Djie 2006, Fedele+ 17/

mm dust

Bright, gas-rich disk that hosts at a

confirmed ~|-5 Jupiter-mass planet
e.g, Raman+06, Pani¢+08, Booth, CJL+23

Planet seen via moving NIR point
source, disk gas kinematics, and
carves dust & gas gap

e.g, Gratton+ 19, Garg+22, Hammond+23

Chemical signatures of planet seen

in SO and SiS (also “CQO, 3CO)
Law+23

Law+23
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The planet-hosting HD 169 142 disk

Nearby (d = 15 pc) Herbig star

with a face-on disk
Blondel & Djie 2006, Fedele+ 17/

(sub)-micron dust

2015-05-03

Bright, gas-rich disk that hosts at a

confirmed ~|-5 Jupiter-mass planet
e.g, Raman+06, Pani¢+08, Booth, CJL+23

Planet seen via moving NIR point
source, disk gas kinematics, and
carves dust & gas gap

e.g, Gratton+ 19, Garg+22, Hammond+23

Chemical signatures of planet seen

in SO and SiS (also “CQO, 3CO)
Law+23

Hammond+23
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The planet-hosting HD 169 142 disk

Nearby (d = 15 pc) Herbig star

with a face-on disk
Blondel & Djie 2006, Fedele+ 17/

gas + mm dust

Bright, gas-rich disk that hosts at a

confirmed ~|-5 Jupiter-mass planet
e.g, Raman+06, Pani¢+08, Booth, CJL+23

Planet seen via moving NIR point
source, disk gas kinematics, and
carves dust & gas gap

e.g, Gratton+ 19, Garg+22, Hammond+23

Chemical signatures of planet seen
in SO and SiS (also '2CO, 13CO) gas around

Law+23 Plane_t

Law+23




The planet-hosting HD 169 142 disk

* Nearby (d = |15 pc) Herbig star

with a face-on disk
Blondel & Djie 2006, Fedele+ 17/

gas + mm dust

* Bright, gas-rich disk that hosts at a

confirmed ~|-5 Jupiter-mass planet
e.g, Raman+06, Pani¢+08, Booth, CJL+23

* Planet seen via moving NIR point
source, disk gas kinematics, and

~Ar\/aac f‘ll ict Q, AIJC 1M

Questions:

* s this a unique system, or we
can find more? gas around
 Can we use SO to detect planet

additional planets!?
Law+23




Super-Earth formation in the TW Hya disk

* Nearest (d = 60 pc) gas-rich
protoplanetary disk
e.g,Andrews+ | 6, league+ [ 6, Huang+ 18

mm dust

* Two super-Earths can explain the

inner dust gaps at 24 au and 41| au
Mentiplay+18

Andrews+ 16
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Super-Earth formation in the TW Hya disk

* Nearest (d = 60 pc) gas-rich
protoplanetary disk
e.g,Andrews+ | 6, league+ [ 6, Huang+ 18

modeled mm dust

* Two super-Earths can explain the

inner dust gaps at 24 au and 41| au
Mentiplay+18

* Also, very well studied with a large
amount of ALMA archival data:

2016.1.00311.S (Pl:I. Cleeves), 2019.1.01'1 /7.5 (C. Eistrup)

Mentiplay+ 18




Asymmetric SO detected in the TW Hya disk
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Asymmetric SO detected in the TW Hya disk
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Asymmetric SO detected in the TW Hya disk

* 50O morphology and
kinematics are consistent 0.5
with a ballistic outflow

* Best-fit planet mass Is
~4 Mg planet

e Mass-loss rate of
~|10®%to 108 IVIJup yr !

--------
-
~
.

DEC offset (arcsec)

.

. .
. .
------------

possible protoplanet

 Unique opportunity to B

probe the earliest phase

of planet formation 1.0 0.5 0.0 ~0.5
RA offset (arcsec)

Yoshida, Nomura, CJL+24




The future Is bright

* Several ongoing or recently-accepted
Large Programs focused on gas
content of protoplanetary disks

* DECO (PI: . Cleeves) targets 80 disks in
many lines, including CS and SO

« CHEER (PI: . Pegues) will target 20
Herbig disks in many S-bearing

molecules (H,CS, SO, SO,, SiS)

« SMA-SPEC (PI: K. Oberg) is observing
40 disks in a total ~1 10 GHz of
bandwidth

* WSU ALMA will vastly improve
bandwidth of ALMA




Summary

* Multi-line observations of
sulfur species in the
HD 163296 disk provide:
* Spatially-resolved gas conditions
* (as density in planet-carved gap

* Robust measurement of 34S
fractionation

* Planet-driven outflow in SO in
TW Hya reveals ~4 Mg planet

* Sulfur-bearing molecules
provide a powerful window

into planet formation! Thank )’OU!




