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Accretion disk winds
• Observationally confirmed in many types of accreting 

systems: 
• Active galactic nuclei and tidal disruption events 

(supermassive black holes)
• X-ray binaries (stellar-mass black holes and neutron 

stars)
• Accreting white dwarfs

• A number of possible launching mechanisms
• Radiation pressure, line driving, magnetic forces, 

thermal driving



Outflows from accreting systems – why do we 
care?

• Can carry away large fraction of originally infalling 
mass

• Winds from inner accretion flow may reach 
relativistic velocities (~0.1c) -> huge kinetic power

• We can measure outflow elemental abundances

• Current status: 
• Launching mechanism unknown in most systems
• Wind energetics (and impact on surroundings!) 

poorly constrained

Pakull+08



X-ray source

Studying ionized outflows with X-ray spectroscopy

• Absorption spectra particularly useful 
• But only sample wind at a single point!

• Can model wind re-emission to study 3D 
wind structure
• Emission often weak, modelling can be 

degenerate

• Second major issue: almost never measure 
the wind number density

Miller et al. 2015

Absorption lines Emission lines



Hercules X-1: an X-ray 
binary with a warped disk

• A bright neutron star X-ray binary 
discovered in early 1970s

• Observed nearly edge-on 
• 35-day cycle of high and low flux states
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Hercules X-1: an X-ray 
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Hercules X-1: an X-ray 
binary with a warped disk

• A bright neutron star X-ray binary 
discovered in early 1970s

• Observed nearly edge-on 
• 35-day cycle of high and low flux states -> 

precessing warped accretion disk

Courtesy of R. Hickox. Model from 
Leahy, Scott & Wilson (2000).

Precession phase



Hercules X-1: an X-ray 
binary with a varying 

sightline
• A bright neutron star X-ray binary 

discovered in early 1970s
• Observed nearly edge-on 
• 35-day cycle of high and low flux states -> 

precessing warped accretion disk

Courtesy of R. Hickox. Model from 
Leahy, Scott & Wilson (2000).

Precession phase
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Hercules X-1: an X-ray 
binary with a varying 

sightline
• A bright neutron star X-ray binary 

discovered in early 1970s
• Observed nearly edge-on 
• 35-day cycle of high and low flux states -> 

precessing warped accretion disk

Kosec et al. (2020)
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• Execute a large observational campaign with XMM-Newton 
(400 ks) and Chandra (50 ks)

• Study the evolution of wind properties with precession phase -> 
height above accretion disk



Wind evolution with disk precession phase
• Line optical depth decreases with disk precession phase
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Disk wind properties
• Measure disk wind properties using photo-

ionization model PION at 28 epochs:
• Column density !"
• Ionization parameter # = %

&'(

• Column density strongly decreases with 
precession phase, from 1023 to 1020 cm-2 

-> wind weakens at greater heights
• Ionization parameter: similar evolution, 

but less variable

Chandra	HETG

XMM	archival

XMM	2020	campaign
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Thermal	wind	launch	radius
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A 2D map of the disk wind
• Model the warped disk shape, using measured absorber distances from the X-ray source -> obtain 

the first 2D map of an accretion disk wind



Hercules X-1: an X-ray pulsar
• Powered by a highly magnetized (1012 G) neutron star 

rotating every 1.24 sec

• Matter channeled onto magnetic poles -> anisotropic X-
ray emission -> X-ray pulsations

• Time-dependent irradiation of disk wind -> wind 
ionization periodically responds to time-variable 
radiation field

• Ion recombination timescale depends on number 
density:    !"#$ = ('"#$(#)*+



Simulating the ionization 
response of the wind
• Use time-dependent photoionization code 

TPHO (Rogantini et al. 2022)

• Simulate response of wind ionization to 
realistic Her X-1 pulsations, observe 
changes in line column densities
• Low number density -> no variation

• Intermediate density -> ionization response 
delay

• High density -> immediate response
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Ionization response of the wind: XMM-Newton data
• Analysis of highest-quality 

XMM-Newton 
observation of Her X-1

• Split data by pulse phase 
into 10 bins

• Model wind absorption 
lines with PION 
photoionization model

• Conclusion: wind 
responds immediately to 
flux variations
• Wind number density is 

at least 1012 cm-3
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Future: precision wind 
mapping with XRISM
• Current XMM data pushed to the 

limit. XRISM will offer much better 
spectral resolution

• XRISM -> precision measurements of 
wind ionization response to X-ray 
pulsations in Her X-1
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Future Present: precision 
wind mapping with XRISM
• Current XMM data pushed to the 

limit. XRISM will offer much better 
spectral resolution

• XRISM -> precision measurements of 
wind ionization response to X-ray 
pulsations in Her X-1

• Large campaign on Her X-1 with 
XRISM (180 ks), XMM-Newton (80 
ks), Chandra (50 ks), NuSTAR (50 ks) 
executed on September 10-14 2024: 
stay tuned for new exciting results!!
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Conclusions
• Thanks to its warped, precessing accretion disk and pulsating X-ray source, Hercules X-1 offers 

unique insights into the physics of accretion disk winds in X-ray binaries

• We leveraged the disk precession to study the wind vertical structure, and produce the first 2D 
map of a disk wind

• Leveraging the X-ray pulsations of Her X-1, we obtained first constraints on the wind number 
density

• A combined X-ray campaign led by XRISM (carried out last week!) will allow us to measure the 
wind density over a range of heights, constraining the wind launching mechanism



Analysis of XMM-Newton EPIC pn data: 
Phenomenological method

• Analysis of highest-quality 
XMM-Newton observation 
of Her X-1

• Split EPIC data by pulse 
phase into 10 bins

• Analyze wind absorption 
lines with Gaussian models: 
line column density anti-
correlates with X-ray flux
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Future Present: precision 
wind mapping with XRISM
• Current XMM data pushed to the 

limit. XRISM will offer much better 
spectral resolution

• XRISM -> precision measurements of 
wind ionization response to X-ray 
pulsations in Her X-1

• Large campaign on Her X-1 with 
XRISM (180 ks), XMM-Newton (80 
ks), Chandra (50 ks), NuSTAR (50 ks) 
executed on September 10-14 2024: 
stay tuned for new exciting results!!
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Her X-1: A large observational campaign
• Execute a large 

observational 
campaign with XMM-
Newton (400 ks) and 
Chandra (50 ks)

• Study the evolution of 
wind properties with 
precession phasec
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Accretion disk wind in Hercules X-1

• Detected in 8 out of 9 archival High 
State XMM-Newton observations

• A strong wind parameter variation: 
may be explained by a varying line of 
sight
• Different observations sampling 

different parts of the vertical wind 
structure

• A unique system to study the 
physics of disk winds!!

• To follow up this opportunity: a 
Large XMM (380 ks) + Chandra (50 
ks) campaign during a single 
precession cycle

Warped disc
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Low State

Main High

Disc wind

Neutron star Short
High

Low
State
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Main
High Fig. 2

This 
proposal

Precession cycle



Scott+00, Leahy+02



This talk: accretion disk winds in X-ray binaries

• But I am interested also in
• Active galactic nuclei
• Tidal disruption events
• Quasiperiodic erupting systems
• Ultraluminous X-ray sources



Future: precision wind 
mapping with XRISM

XRISM
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• Current XMM data pushed to the limit. 
XRISM will greatly improve data quality

• 10 ks XRISM simulation of Her X-1 (Kosec et 
al. 2023c): excellent spectral quality

• XRISM -> precision measurements of wind 
ionization response to X-ray pulsations in 
Her X-1

10 ks simulation



Accretion disk winds in X-ray binaries

• Blueshifted (~1000 km/s) absorption lines 
ubiquitous in high inclination soft state 
black hole XRBs, also in neutron star 
systems

• Launch solid angle
• Could be as small as 5-10° from the disk

• Still can carry away significant fraction originally 
infalling mass

• Launching mechanism
• Radiation pressure on electrons insufficient, 

wind too ionised for line-driving

• Compton heating and magnetic fields strong 
candidates for wind driving

Miller et al. (2008), Ponti et al. (2012), Diaz Trigo et al. (2012)

GRO J1655-40

GX 13+1



Understanding the properties of disk winds
• Wind ionized as it lifts from the disk -> study X-ray 

spectral transitions

• Photoionization wind modeling:
• Measure wind velocity v, column density NH, ionization 

parameter ξ, but usually NOT number density n

• Number density: crucial parameter to determine wind 
location and energetics

• ξ = #$%&
'() +̇,-. = Ω012345678

Absorption lines



Her X-1 and its disk wind

• Known to host a warped disk 

precessing every 35 days

• Our line of sight varies over the 35-day 

period: we can sample vertical disk 

wind structure

• Even with deep observations (500+ ks 

XMM-Newton), constraints on wind 

number density are weak (3-4 dex of 

parameter space)
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Time-dependent ionization with XRISM

• Simulate a 25 ks pulse-
resolved XRISM observation 
of Her X-1 with TPHO model

• Assume a range of wind 
densities from 1010 to 1013

cm-3

• Wind response easily 
detectable, and density 
measurable from any time 
delays


