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Accretion disk winds

* Observationally confirmed in many types of accreting
systems:

* Active galactic nuclei and tidal disruption events
(supermassive black holes)

* X-ray binaries (stellar-mass black holes and neutron
stars)

* Accreting white dwarfs

* A number of possible launching mechanisms

* Radiation pressure, line driving, magnetic forces,
thermal driving




Outflows from accreting systems — why do we
care?

Can carry away large fraction of originally infalling
mass

Winds from inner accretion flow may reach
relativistic velocities (~0.1c) -> huge kinetic power

We can measure outflow elemental abundances

Current status:
* Launching mechanism unknown in most systems

* Wind energetics (and impact on surroundings!)
poorly constrained




Studying ionized outflows with X-ray spectroscopy

Absorption lines

X-ray source
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* Absorption spectra particularly useful
* But only sample wind at a single point!

* Can model wind re-emission to study 3D
wind structure

* Emission often weak, modelling can be
degenerate

* Second major issue: almost never measure
the wind number density
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Hercules X-1: an X-ray
binary with a warped disk -
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Hercules X-1: an X-ray
binary with a warped disk

* A bright neutron star X-ray binary
discovered in early 1970s

* Observed nearly edge-on

* 35-day cycle of high and low flux states ->
precessing warped accretion disk
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Hercules X-1: an X-ray
binary with a warped disk

* A bright neutron star X-ray binary
discovered in early 1970s

* Observed nearly edge-on

* 35-day cycle of high and low flux states ->
precessing warped accretion disk

Courtesy of R. Hickox. Model from
Leahy, Scott & Wilson (2000).
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Hercules X-1: an X-ray
binary with a varying
sightline

* A bright neutron star X-ray binary
discovered in early 1970s

* Observed nearly edge-on 2f

* 35-day cycle of high and low flux states -> 0:
precessing warped accretion disk i
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Hercules X-1: an X-ray
binary with a varying
sightline

* A bright neutron star X-ray binary
discovered in early 1970s
* Observed nearly edge-on

* 35-day cycle of high and low flux states ->
precessing warped accretion disk
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Hercules X-1: an X-ray
binary with a varying
sightline

* Execute a large observational campaign with XMM-Newton
(400 ks) and Chandra (50 ks)

* Study the evolution of wind properties with precession phase ->

height above accretion disk
ﬁisc

. disc wind

Kosec et al. (2020)
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Wind evolution with disk precession phase

* Line optical depth decreases with disk precession phase
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the first 2D map of an accretion disk wind
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* Model the warped disk shape, using measured absorber distances from the X-ray source -> obtain
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Hercules X-1: an X-ray pulsar

Powered by a highly magnetized (10%? G) neutron star
rotating every 1.24 sec

Matter channeled onto magnetic poles -> anisotropic X-
ray emission -> X-ray pulsations

Time-dependent irradiation of disk wind -> wind
ionization periodically responds to time-variable
radiation field

lon recombination timescale depends on number
. . _ _1
density: trec = (Areche)
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Simulating the ionization
response of the wind

* Use time-dependent photoionization code 6 . | | |
TPHO (Rogantini et al. 2022) . . :
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* Simulate response of wind ionization to < 14
realistic Her X-1 pulsations, observe E 172¢

changes in line column densities Z 170

* Low number density -> no variation = 108

* Intermediate density -> ionization response ﬁi
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lonization response of the wind: XMM-Newton data

Analysis of highest-quality
XMI\X-Newton
observation of Her X-1

Split data by pulse phase
into 10 bins

Model wind absorption
lines with PION
photoionization model

Conclusion: wind
responds immediately to
flux variations

* Wind number density is
at least 1012 cm-3

Kosec et al. (2024)
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Future: precision wind
mapping with XRISM

* Current XMM data pushed to the
limit. XRISM will offer much better
spectral resolution

* XRISM -> precision measurements of
wind ionization response to X-ray
pulsations in Her X-1
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Future Present: precision
wind mapping with XRISM

* Current XMM data pushed to the
limit. XRISM will offer much better
spectral resolution

* XRISM -> precision measurements of
wind ionization response to X-ray
pulsations in Her X-1

* Large campaign on Her X-1 with

XRISM (180 ks), XMM-Newton (80 ‘H T
ks), Chandra (50 ks), NuSTAR (50 ks) ! | { i l‘r“\ | 1 Hll i
executed on September 10-14 2024: Bty | . P ‘ t + fimt
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Conclusions

Thanks to its warped, precessing accretion disk and pulsating X-ray source, Hercules X-1 offers
unigue insights into the physics of accretion disk winds in X-ray binaries

We leveraged the disk precession to study the wind vertical structure, and produce the first 2D
map of a disk wind

Leveraging the X-ray pulsations of Her X-1, we obtained first constraints on the wind number
density

A combined X-ray campaign led by XRISM (carried out last week!) will allow us to measure the
wind density over a range of heights, constraining the wind launching mechanism



Analysis of XMM-Newton EPIC pn data:
Phenomenological method

* Analysis of highest-quality
XMM-Newton observation
of Her X-1

e Split EPIC data by pulse
phase into 10 bins

* Analyze wind absorption
lines with Gaussian models:
line column density anti-
correlates with X-ray flux
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Future Present: precision
wind mapping with XRISM

Current XMM data pushed to the
limit. XRISM will offer much better
spectral resolution

XRISM -> precision measurements of
wind ionization response to X-ray
pulsations in Her X-1

Large campaign on Her X-1 with
XRISM (180 ks), XMM-Newton (80
ks), Chandra (50 ks), NuSTAR (50 ks)
executed on September 10-14 2024:
stay tuned for new exciting results!!
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Her X-1: A large observational campaign

* Execute a large
observational
campaign with XMM-
Newton (400 ks) and
Chandra (50 ks)

* Study the evolution of
wind properties with
precession phasec
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Accretion disk wind in Hercules X-1

* Detected in 8 out of 9 archival High Precession cycle
State XMM-Newton observations
Short High g

* A strong wind parameter variation:
may be explained by a varying line of Disc wind
sight
* Different observations samplin
Lne Low State V

different parts of the vertical wind
structure Warped disc

* A unique system to study the Neiiron star
physics of disk winds!!

 To follow up this opportunity: a Main High §>
Large XMM (380 ks) + Chandra (50
ks) campaign during a single
precession cycle
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This talk: accretion disk winds in X-ray binaries

* But | am interested also in
* Active galactic nuclei
 Tidal disruption events
* Quasiperiodic erupting systems
e Ultraluminous X-ray sources



Future: precision wind
mapping with XRISM

* Current XMM data pushed to the limit.
XRISM will greatly improve data quality

* 10 ks XRISM simulation of Her X-1 (Kosec et

al. 2023c): excellent spectral quality Fel Fe XXV Fe XXVI
* XRISM -> precision measurements of wind
ionization response to X-ray pulsations in = |
Her X-1 E
L Vo i iy
LA L A TR TR
XRISM | | !



Accretion disk winds in X-ray binaries

GRO J1655-40

* Blueshifted (~1000 km/s) absorption lines
ubiquitous in high inclination soft state
black hole XRBs, also in neutron star
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* Launch solid angle : ’
* Could be as small as 5-10° from the disk .
* Still can carry away significant fraction originally - GX 13+1

infalling mass

* Launching mechanism

* Radiation pressure on electrons insufficient,
wind too ionised for line-driving

* Compton heating and magnetic fields strong
candidates for wind driving
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Understanding the properties of disk winds

Wind ionized as it lifts from the disk -> study X-ray
spectral transitions

Photoionization wind modeling:

* Measure wind velocity v, column density N, ionization
parameter ¢, but usually NOT number density n

Number density: crucial parameter to determine wind
location and energetics

g — ion Mgy = QCyumynR2v

nR2



Her X-1 and its disk wind

* Known to host a warped disk
precessing every 35 days

* QOur line of sight varies over the 35-day

period: we can sample vertical disk
wind structure

* Even with deep observations (500+ ks
XMM-Newton), constraints on wind
number density are weak (3-4 dex of
parameter space)
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Time-dependent ionization with XRISM

Time/s  Her X-1 precession phase = 0.03 Time/s
0 0.5 1 1.5 2 0 0.5 1 1.5 2

* Simulate a 25 ks pulse- 39
resolved XRISM observation 185 |
of Her X-1 with TPHO model
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cm3
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* Wind response easily
detectable, and density
measurable from any time
delays
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