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@> A Tale of Two Black Holes

-

55 million light-years away from us 27 thousand light-years away from us
6.5 billion solar masses 4 million solar masses




@> A Tale of Two Black Holes

Mercury's orbit

Voyager 1 Sun's diameter
. Pluto's orbit .

Visualization by L. Medeiros, IAS/ xkcd




@> The Polarization of Sgr A*: Historical Context

Proto-EHT results (2013) are the only observations that resolve the polarization of Sgr A* at any wavelength!

e Strong polarization on long baselines (>100% interferometric fractional polarization)

e Asymmetric polarization implies spatial changes in the polarization direction
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> The Polarization of Sgr A*: Historical Context

Polarimetric observations have provided some of the most significant breakthroughs for studies of Sgr A* over the past
few decades:

e Decisive in establishing Sgr A* as an extremely underfed black hole

e Best window into the variability of Sgr A*

e Multiple lines of evidence for persistent, partially ordered magnetic fields near Sgr A*

Unlike M87*, there are almost no previous polarimetric measurements of Sgr A* using VLBI!




@> EHT 2017 Sgr A* Campaign
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> Image Reconstruction Methods: Diversity and Redundancy
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> Image Reconstruction Methods: Diversity and Redundancy
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> Image Reconstruction Methods: Diversity and Redundancy
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@> Image Reconstruction Methods: Diversity and Redundancy
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> Image Reconstruction Methods: Diversity and Redundancy
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> Image Reconstruction Methods: Diversity and Redundancy
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Image Reconstruction Methods: Diversity and Redundancy

Many methods with:

-1 e Different assumptions about the image

| e Different data products

e Different variability mitigation

/ e Different image products
THEMIS Wherein they agree:



@> Understanding our images

Blind imaging in
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teams

Data
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Feedback on
data quality
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@> Real Data: Linear Polarization Images
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@> Real Data

snapshot m-ring

: Circular Polarization Images

THEMIS

eht-imaging

DoG-HiT

Brightness Temperature (10° K)

All methods reconstruct negative
circular polarization on the West side of
the emission ring

Both THEMIS and m-ring modeling find
an East-West dipole structure

Overall preference for simple circular
polarization structures

The circular polarization structure is
more uncertain than the linear
polarization structure




@> This is Sagittarius A*!
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@> What are we looking at?

01 02 03 04
Fractional Polarization |m|

0.5

Very low accretion rate implies puffy
hot accretion flow.

Synchrotron radiation: intrinsically
polarized, tracing magnetic field
Non-polarized image already
preferred models that were (i) non-
zero spin, (ii) relatively face-on, and
(iii) strongly magnetized (EHTC et al.
2022a-1).

New: large polarization fraction with
rotational symmetry.




General Relativistic Magnetohydrodynamics General Relativistic Ray Tracing
(GRMHD) (GRRT)

Evolve a magnetized torus of gas in a Kerr Solve null geodesic equation for trajectories,
spacetime of a given spin. then do polarized radiative transfer.

Movies: Hotaka Shiokawa







> Additional plasma effects?

As polarized emission travels through a magnetized
plasma, it is modified by Faraday effects.

\\magnetized plasma

| To “undo” Faraday rotation by an external screen and
“derotate,” astronomers compute the rotation
measure (RM).

AN DAVA SN
AN?

RM =

For Sgr A*, we observed an RM corresponding to a
46 degree rotation (Wielgus et al. 2023). However,
we’re not sure if this really corresponds to an external
screen to be removed.
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> Which should we compare with the simulations?

As Observed RM Derotated

Implies counter-clockwise inflow Implies clockwise inflow




@> Combined Constraints: Without derotation
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@> Combined Constraints: With derotation

Preferred models are:

e Moderate inclination

e Rotating clockwise
e Mostly MAD

All Polarimetric Constraints
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@> The Best-Bet Model
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e Magnetically Arrested Disk (MAD), just like M87*. Is this universal?
e Jetis 150% efficient due to spin extraction.
e Significant emission from jet sheath.




> A Tale of Two Black Holes.. in Polarization!

Sgr A*




> A polarized Milky Way

Polarized emission from Milky Way dust
Cr. ESA and the Planck Collaboration

Polarized emission from plasma around our
Milky Way supermassive black hole Sagittarius A*

Polarized emission from dust at the center of our Milky Way
Cr. Event Horizon Telescope Collaboration Cr. NASA/SOFIA, NASA/Hubble Space Telescope/NICMOS.




