Deepest views of the early galaxy

Primordial Rotating Disk Composed of ≥15 Dense Star-Forming Clumps at Cosmic Dawn

Seiji Fujimoto NASA Hubble Fellow (UT Austin)

> U. Toronto from July 2025

Why High Redshift?

- Development of large scale structure
- Process of cosmic reionization (bright vs. sum of faint objects?)
- Emergence of first galaxies and blackholes

Early galaxies at EoR are tightly involved with fundamental cosmological questions

JWST Exploration of Highest-z Universe

Discovery of uniquely bright galaxies at z=10-12; NASA press release Nov, 2022 (e.g., Naidu+22; Castellano+22)

Remarkably overabundance of Bright/Massive Galaxies <u>O. What is the physical origin?</u>

How to dive into detailed physics in early galaxies?

Approved programs scheduled in 2022–2024 for a single lensed galaxy at z = 6

Telescope	Instrument/band	PI	Time (hrs)	Scope	Observation	
JWST cy1	NIRSpec IFU, NIRCam	S. Fujimoto	13.2	Key optical emission lines & UV- optical continuum	late 2022 ~ early 2023	
JWST cy2	NIRCam	S. Fujimoto	5.0	Mapping Hα	early 2024	
ALMA cy8	Band6, 5	S. Fujimoto	16.3	Deep [CII]158um & [OI]146um follow-up	late 2022	
ALMA cy8	Band7, 8	S. Fujimoto	19.2	Detecting [OIII] & [NII]122um, 205um	late 2022	
ALMA cy8	Band 3	F. Valentino	19.4	Detecting CO(7-6), [CI](2-1), 3-mm continuum	late 2021	
ALMA cy9	Band 6	S. Fujimoto	26.5	High-resolution (~0."05) deep [CII] follow-up	July~Sep 2023	
ALMA cy9	Band7, 8	S. Fujimoto	24.5	Detecting [OIII] & [NII]122um, 205um (resub)	partially taken in early 2023	
ALMA cy10	Band 6	S. Fujimoto	16.4	Low resolution (~1."5) deep [CII] follow-up	early 2024	
VLT S22A	MUSE	S. Fujimoto	8.9	Detecting Lya	complete in early 2023	
Keck S22B	MOSFIRE	Y. Ono	1 night	Detecting rest-UV lines	bad weather	
JVLA S20A, S21A	Band Ku	S. Fujimoto	23.2	Detecting CO(1-0)	complete in early 2022	

Target: A sub-L* main-sequence galaxy at z=6.07

Laporte et al. 2021, MNRAS, 505; Fujimoto et al. 2021, ApJ, 911, 99; Fujimoto et al. 2024a submitted (arXiv: 2402.18543)

- **Multiple images** spectroscopically confirmed at = 6.07 with [CII]158um
- Brightest ([CII]~20mJy, F160W~23.5mag) so far known at zspec > 6 in the observed-frame, but still intrinsically <u>a low-mass main-sequence galaxy (M_{star} ~ 10⁹ M_{sun}, ~local dwarf)</u>

Deepest Dive into the true picture of Early Galaxy

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

A single rotating disk galaxy resolved into ~ 15 individual small (Re ~ 10-60pc, after lens corr.) clumps, accounting for ~70% of total flux in F150W

Deepest Dive into the true picture of Early Galaxy

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

CEERS z >~9 candidates (Finkelstein+23)

Many single-disk like JWST early galaxies may also be highly clumpy

How about Dynamics ?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

ALMA + NIRSpec IFU (in the source plane)

• Numerous clumps + Smooth rotating disk ($\sigma \sim 20$ km/s, V/ $\sigma \sim 3$)

How about Dynamics ?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

• Challenging to early galaxy formation models

Frequent bursty star-formation \Leftrightarrow **Smooth rotating disk = Weak feedback?**

Weak feedback in Early Galaxies?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

 $\epsilon = M_{star} / (f_{baryon} M_{halo})$: Integrated over the lifetime of the system

Very high gas density (~comparable to local ULIRGs) observed, well aligned with high star-formation efficiency of $\varepsilon > 0.6 - 0.8$ * $\varepsilon < 0.1$ in local galaxies

Summary

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

Q. Why high abundance of bright galaxies z >~9 ?
A. Early galaxy = Numerous clump + smooth disk = Weak feedback

Backup

How about Dynamics ?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

Numerous clumps are formed by disk instability

Presence of outflow does not contradict weak feedback

Fujimoto + in prep.; see also talks by e.g., Andrea, Avishai

Approved JWST × ALMA joint program

2023.1.000149.S & #4573 (PI: S. Fujimoto)

<u>JWST</u>

NIRCam NB F466N \rightarrow Mapping out H α (~5hrs) <u>ALMA</u> Low deep resolution [CII]158um (~16hrs)

<u>Cold Gas Inflow</u> vs. <u>Ionized Gas Outflow</u> will be investigated by the Hα structure

F444W (H α +NII+cont) -F466N (H α +NII)

F444W-F466N smoothed

F466N (H α +NII)

F444W (H α +NII+cont) -F466N (H α +NII)

F444W-F466N smoothed

F466N (H α +NII)

0 0 10

544	1037	1535	2029	2527	3021	3515	4013	4506	

Figure 2. Analogue of Fig. 1, but now only for the global TNG50 (dashed lines) and TNG100 galaxy populations (solid lines) and at different redshifts (lilac: z = 0, dark blue: z = 2, light blue: z = 4, turquoise: z = 5, green: z = 6, orange: z = 7-8). Overplotted are fits to the predicted $z \ge 4$ relations of all galaxies (thick red line in each panel, with the fitted error shown by the red shaded area) and of galaxies above a flux limit of 3×10^{-17} erg s⁻¹ cm⁻² (thick, red dashed line). Model predictions are compared to T_e -based measurements of $12 + \log(O/H)$ for local SDSS analogues of $z \sim 2$ galaxies from Bian et al. (2018, light grey, dash–dotted lines in the O3N2, O32, R3, and R23 panels), and for local extremely metal-poor galaxies in the Subaru EMPRESS survey from Nakajima et al. (2022, dark grey, dash–dotted lines in the R2, R3, R23, O3N2, and O32 panels). Also shown are the results inferred from *JWST*/NIRSpec spectroscopy for three galaxies at $z \sim 6-8$ from Curti et al. (2023, black diamonds with error bars in the R2, O32, R3, and R23 panels), and their associated proposed new calibrations of the R2, R3, R23, and O32 metallicity estimators at redshifts $z \sim 2-9$ (black dash–dotted lines).

Is it expected?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

Much clumpier than expected

Deepest Dive into the true picture of Early Galaxy

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

alaxy resolved into Re ~ 10-60pc, after lens corr.) clumps, f total flux in F150W

Deepest Dive into the true picture of Early Galaxy

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

Is it expected?

Fujimoto et al. 2024a, submitted (arXiv: 2402.18543)

Much clumpier than expected

IFU Trio: Extended [CII] & Lya with MUSE + ALMA

Fujimoto + ALCS team (in prep.)

- Extended Lya (~6") & [CII] (~3") line structures appear
- Extended Lya & [CII] lines are both red-shifted w.r.t z_sys

Dynamical Interplay of Ionized gas outflow / Cold gas inflow / Scattering

Deepest views of the early galaxy

Early Galaxy Assembly Probed by JWST × ALMA × Lensing: From Small Clumps to Dynamical Interplay at z=6

Seiji Fujimoto NASA Hubble Fellow (UT Austin → U. Toronto)

Deepest views of the early galaxy

Early Galaxy Assembly Probed by JWST × ALMA × Lensing:

trom

a at

From Small Clumps to Dynamical Interplay at z=6

Seiji NASAH (UT) "The Cold Universe" in 2016