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Cosmiic rays interact with galactic magnetic tields
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On small (~au) scales, magnetic
fluctuations “scatter” cosmic rays

This leads to a bulk “diffusion” of
the cosmic-ray energy “fluid” on
large
(> pc) scales



Cosmic rays may be dominant CGM pressure
(around low-redshift L* galaxies)

Enzo, PPM Enzo, MHDRK Gizmo Arepo ChaNGa
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Salemetal. 2016  Butsky and Quinn 2018 Chanetal. 2019 Buck et al. 2020 Butsky et al. 2022

Bad news: predictions are extremely sensitive to assumed models of
cosmic-ray transport @



. : , S}
~GeV Cosmic-ray transport is severely under-constrained

existing constraints can't
distinguish between the vast
range of allowed models
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Constraining CR transport in the CGM
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First constraints on CR transport in CGM using COS-Halos!

Werk et al. 2013, Butsky, Nakum et al. 2023
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First constraints on CR transport in CGM using COS-Halos!

2 Werk et al. 2013, Butsky, Nakum et al. 2023
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~GeV Cosmic-ray transport is severely under-constrained

exiflting constraints can't
disfinguish between the vast
rarfee of allowed models

J Option 2: constrain
s underlying scattering
physics in ISM
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Traditional, “continuous” CR scattering models
are fundamentally flawed
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Intermittent / “patchy” model of CR scattering

strongly weakly
scattered scattered
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“Microscale” ISM may be scattering CRs
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Coincidence??? o0

Microstructure in diffuse ISM Magnetic plasmoids

Pulsar ISM Observer

see Stanimirovic and Zweibel o _
2018, Ocker et al. 2024 see Fielding et al. 2023, Kempski et al. 2023,

Lemoine et al. 2023
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In summary, existing models of CR transport are

broken, butI think were close to figuring it out!
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