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Abstract

The James Webb Space Telescope (JWST) has provided the first opportunity of studying the atmospheres of
terrestrial exoplanets and estimating their surface conditions. Earth-sized planets around Sun-like stars are currently
inaccessible with JWST, however, and will have to be observed using the next generation of telescopes with direct-
imaging capabilities. Detecting active volcanism on an Earth-like planet would be particularly valuable as it would
provide insight into its interior and provide context for the commonality of the interior states of Earth and Venus.
In this work, we used a climate model to simulate four exoEarths over eight years with ongoing large igneous
province eruptions with outputs ranging from 1.8 to 60 Gt of sulfur dioxide. The atmospheric data from the
simulations were used to model direct-imaging observations between 0.2 and 2.0 pm, producing reflectance spectra
for every month of each exoEarth simulation. We calculated the amount of observation time required to detect each
of the major absorption features in the spectra, and we identified the most prominent effects that volcanism had on
the reflectance spectra. These effects include changes in the size of the O3, O,, and H,O absorption features and
changes in the slope of the spectrum. Of these changes, we conclude that the most detectable and least ambiguous
evidence of volcanism are changes in both O3 absorption and the slope of the spectrum.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet astronomy (486); Exoplanet
detection methods (489); Exoplanets (498); Volcanism (2174); Direct imaging (387); Spectroscopy (1558)
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Introduction
 Studying volcanism on exoplanets will give insight into their
geological properties
* Provide context for the interior states of Earth and Venus

* \Volcanic activity on exoplanets will need to be inferred from
observations of their atmospheres

* Earth-sized planets around Sun-like stars will require future missions
like the Habitable Worlds Observatory (HWO)

How can we tell if an exoplanet is volcanically active?
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Mode
* GEOSCCM Eart

’]_

ng Volcanic Eruptions on Earth

nased 3D GCM

* Resolution =1 x 1 degrees, 72 vertical layers to 80 km

* 4 Large igneous province (LIP) eruptions:

* Injecting SO2 in upper troposphere and lower stratosphere
* 1.8 — 60 Gt of SO2 + Baseline no SO2 case

* Each simulation = 4 years of eruptions + 4 years of no eruptions

* Output monthly averaged atmospheres
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Effects of the Eruptions
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Modelling Reflectance Spectra with GCM Data

* Planetary Spectrum Generator (GlobES Application)

e Earth-analog around Sun-like star, 10 pc away

* LUVOIR-like telescope with coronagraph (6 meter)

* UV, Visible, and NIR bandpasses (0.2 - 2.0 microns)

* 90-degree planet phase angle

* Monthly averaged GCM data to define exoplanet atmosphere
* 96 Spectra per simulation

e S — g
g . G 214b measured via Observatory from 14.6427 pc for date

eometry: GJ 1
~+ (2020/04/08 01:32UT)
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30 Gt Eruption (1t 4 Years)

Steeper --=- Baseline Month 18 Month 36
Slope —— Month 6 Month 24 Month 42
—— Month 12 Month 30 Month 48

Feature flattening from
haze and clouds

O
e
©
a el
)
n
]
-
-
C
@)
O

1.00 .
Wavelength (um)

Colby Ostberg | costbO0O1@ucr.edu



30 Gt Eruption (Entire Simulation)
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30 Gt Eruption (log-scale)

O3 feature
diminished

(@)
S
©
o
o
(V)]
(©
| -
)
C
@)
@

= =: Baseline Month 18 Month 36
— Month 6 Month 24 Month 42
— Month 12 Month 30 Month 48

0.50 0.75 1.00 1.25
Wavelength (um)

Colby Ostberg | costbO0O1@ucr.edu



Feature growth as haze is
removed
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1.8 Gt Eruption (Log-Scale)

Smaller eruption = less change in feature size
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Baseline Simulation Variation
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Eruption Variation vs Baseline Variation
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Calculating S/N

e Spectrum with molecule absorption — spectrum without

e Simulated instrumental noise with PSG
* Quantified the detectability of all features (S/N > 5)
* Need to determine sensitivity to feature variation

VIS Bandpass NIR Bandpass

— With O, & H,0 44 — With H,0
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Time Needed to Detect Features

e UV Bandpass (0.2 — 0.5 microns)
* O3 feature can be detected in 2-5 hours for all eruptions

* Visible Bandpass (0.5 — 1.0 microns)

* H20 and O2 features range from 3-2000 hours to detect
* NIR Bandpass (1.0 — 2.0 microns)

* H20 features detected in 9-2000 hours

H20 features can be detected relatively quickly or be
undetectable depending on haze

O3 is the most consistently detectable feature
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Main Takeaways
* SO2 would be ideal indicator but is hidden by O3 absorption

* Main indicators of volcanic activity
e Changesin 03, H20, and O2 feature
* Steepened slope at 0.4 micron from haze scattering

* O3 can be detected in 2-5 hours, H20 & 02 detectability varies drastically

Future Work

* |f star is > 10 pc away, what changes?
* Possible with no coronograph and/or with HWQO?

 Can weather changes on shorter timescales cause similar fluctuations in
absorption feature size?

* Can the haze scatter slope be caused by other mechanisms/haze types?
* Different eruption types
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