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TOI-5344 b

as a new Giant Exoplanets
around M-dwarf Stars (GEMS)

- Te Han (University of California, Irvine)
Exsocal 2023, Dec. 11, Caltech
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I. GEMS
1. M-dwarfs

M-dwarfs dominate in number and have K

% larger radial velocity signals

* deeper transits

But they also have

X lower luminosity
X spots contaminating transits

X molecular line complicating spectra

CEMS
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Defining GEMS: A rare class of Exoplanets

Stellar 2600 Ke ® 4000 K Q

Tets 5780 K
Planet ~ 8 Ryp— <= ® ~15R,4
R, 9 Rg 1 Rg

Plan.et. ~ 80 MEB._Q“e!’:)_i > ~ 4000 Mg
M, sini 95 Mg 318 Mg
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GEMS are rare in theory
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Are M dwarfs too small to form
giant planets?

I. GEMS
2. Giant Planets

..and In practice

We have only confirmed
~ 30 GEMS, with 17 transiting.

TESS has been discovering many

transiting GEMS.

Will GEMS keep being rare?
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Il. TOI-5344 b as a new GEMS



Il. TOI-5344 b

TESS observed ten transits of ~3% depth
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* TOI-5344 b was identified as a planet candidate in the QLP Faint Star Search
(Huang et al. 2020; Kunimoto et al. 2022).
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1. No stellar companion
a. Gaia RUWE =1.035
b. NESSI Speckle imaging

No bright companions with Az <3.0 are

observed between 0.2" and 1.2" of the target.

2. No Detectable Stellar Rotation

Signal
a. TESS GLS periodogram
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1. Stellar parameters

Ruling out False-Positives:

ASAS-SN V band

1. No stellar companion
a. Gaia RUWE =1.035
b. NESSI Speckle imaging

No bright companions with Az <3.0 are
1 7" 2.45675 2.45700 2.45725 2.45750 2.45775 2.45800 2.45825 2.45850
observed between 0.2" and 1.2" of the target. D o8

2. No Detectable Stellar Rotation

Slg Nnal 0.025
a. TESS GLS periodogram 0-000
b. ZTF* & ASAS-SNT GLS periodogram Period (days)

10 . . -
*Zwicky Transient Facility. TAll-Sky Automated Survey for Supernovae.
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Spectral Energy Distribution (SED)
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Spectral Energy Distribution (SED)

M= 0.59'95 M,

R,= 0.563 + 0.016 R

= TOI-5344% is a MO dwarf
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HPF*-SpecMatcht
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1. Stellar parameters

*Habitable-zone Planet Finder (HPF). tStefansson et al. 2020.
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HPF*-SpecMatcht

Observe M-dwarfs
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HPF*-SpecMatcht

Observe M-dwarfs
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properties
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o

Fit a Composite
Spectrum for the
target star
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*Habitable-zone Planet Finder (HPF). tStefansson et al. 2020.
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HPF*-SpecMatcht

Observe M-dwarfs
with known stellar
properties

A G L A VA A
A G L A VA A

Il. TOI-5344 b
1. Stellar parameters

o

Fit a Composite Minimize the
Spectrum for the residual & get
target star stellar parameters

for the target star

AN

%

*Habitable-zone Planet Finder (HPF). tStefansson et al. 2020.
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HPF-SpecMatch on TOI-5344
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1. Stellar parameters
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HPF-SpecMatch on TOI-5344
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HPF-SpecMatch on TOI-5344

T= 3770 £ 88 K

[Fe/H] = 0.48 + 0.12
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Il. TOI-5344 b
1. Stellar parameters

HPF-SpecMatch on TOI-5344
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Comparing TESS FFI light curves
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2. Photometry

Ground-based photometry: the Red Buttes
Observatory

TESS Scctor 43, 44 RBO 2022.10.18 RBO 2022.11.21 RBO 2022.12.14
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P =3.792622 + 0.000010 days
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HPF Radial Velocity
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3. Radial Velocity
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tffrom photometry & RV joint fit.
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tffrom photometry & RV joint fit.

II. TOI-5344 b
4. Results

Stellar Parameters

M, = 0.59+0.02
-0.03 ©

R,= 0.563 * 0.016 R

T.= 3770 * 88 K

[Fe/H] = 0.48 + 0.12
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I1l. GEMS Formation
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11l. GEMS Formation
1. Core accretion

Why M dwarfs might struggle to form giants?

1. M-dwarf planetary disk might not
have enough metal to form core

e Kanodia 2023 (in prep) shows ~ 100 Mg,
metal mass in the disk might be
needed to form ~ 10 Mg core.

2. The time-scale of forming such
core might be longer than the gas
depletion time

20 G E ng)m
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More Saturns, less Jupiters

Compared to Giants around
FGK dwarfs (gray points),
GEMST seems to be smaller:
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More Saturns, less Jupiters

Compared to Giants around
FGK dwarfs (gray points),
GEMST seems to be smaller:
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I1l. GEMS Formation
2. More Saturns, less Jupiters
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T The sample consists of 17 Transiting GEMS.
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More Saturns, less Jupiters
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More Saturns, less Jupiters
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I1l. GEMS Formation
2. More Saturns, less Jupiters

Planet Metal fractiont of GEMS are high
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I1l. GEMS Formation
2. More Saturns, less Jupiters

Planet Metal fractiont of GEMS are high

e Jupiter Metal fraction = | 1000
0.057-0.103

=t
w
<t

e The high metal fraction
suggests GEMS accretes
relatively less gas (like
Saturn)
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24

lIl. GEMS Formation
3. Planet-Metallicity Correlation

Planet-Metallicity Correlation for M dwarfs
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Planet-Metallicity Correlation for M dwarfs

Giants=8 < Rps 15

Non-giants=R,< 8
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3. Planet-Metallicity Correlation

Planet-Metallicity Correlation for M dwarfs

Giants=8 < Rps 15

Non-giants=R,< 8

(Mg)

Planet Mass

= M dwarfs hosting giant
planets appear to have
higher metallicity than those
hosting non-giants.

er

7 1

—0.6 —-0.4 —0.2 0.0 0.2 0.4 0.6
Stellar Metallicity (dex)

Planet Numb




25

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

I1l. GEMS Formation



25

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

I1l. GEMS Formation

-

WISE]
Core
~10 Mg




25

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

11l. GEMS Formation

/

s
EXDRLANETS ASOUND
:M-wul sTass



25

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

11l. GEMS Formation

/

High metallicity disk

uuuuuuuuuuu



25

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

. GEMS Formation

/

o

High metallicity disk
= high opacity?

tMovshovitz et al. 2010
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Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

. GEMS Formation

/

o

High metallicity disk
= high opacity?
= slow heat dissipation

tMovshovitz et al. 2010

GEMS.
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If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

11l. GEMS Formation

/

High metallicity disk
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= slow heat dissipation
= slowed gas accretion
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Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

11l. GEMS Formation

/

High metallicity disk

= high opacity?

= slow heat dissipation
= slowed gas accretion

\ TMovshovitz et al. 2010
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Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion
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High metallicity disk

= high opacity?

= slow heat dissipation
= slowed gas accretion

tMovshovitz et al. 2010
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I1l. GEMS Formation

Two GEMS formation theories

If metal cores are
formed in certain
(high metallicity)
disks before gas
depletion

~

/

High metallicity disk

= high opacity?

= slow heat dissipation
= slowed gas accretion

tMovshovitz et al. 2010

A prolonged intermediate
stage of metal accretion
offer energy to hinder
rapid gas accretion.

Metal + Gas

Helled 2023
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Il. TOI-5344 b
2. Photometry

TESS-Gaia Light Curve (TGLC)

TESS FFI Simulated background stars Decontaminated target star
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I1l. GEMS Formation
2. More Saturns, less Jupiters

A correlation between [Fe/H] and Planet density?
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A correlation between [Fe/H] and Planet density?

Kendall's Tau test:
T =0.5268
p =0.0072

= Suggesting a moderate
correlation, but needs more
data to confirm.
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I1l. GEMS Formation
2. More Saturns, less Jupiters
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I. GEMS
2. Giant Planets

The good and bad of finding M-dwarf Exoplanets:

1. Deeper transits

2. Usually dimmer

3. We have more M-dwarfs
4. RV signal larger

5. , but noisier

Giant Exoplanets around M-dwarf Stars (GEMS) are rare in theory and observation.
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How to further understand these systems

GEMS JWST
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