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I. GEMS
1. M-dwarfs

But they also have

✖ lower luminosity

✖ spots contaminating transits

✖ molecular line complicating spectra

M-dwarfs dominate in number and have 

★ larger radial velocity signals

★ deeper transits
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Defining GEMS: A rare class of Exoplanets

I. GEMS
2. Giant Planets

2600 K 4000 KStellar 
Teff 5780 K

~ 8 R⊕ ~ 15 R⊕Planet 
Rp 9 R⊕ 11 R⊕

~ 80 M⊕ ~ 4000 M⊕
Planet 
Mp sini 95 M⊕ 318 M⊕
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GEMS are rare in theory … and in practice

We have only confirmed 
~ 30 GEMS, with 17 transiting.✔

?

Are M dwarfs too small to form 
giant planets? 

TESS has been discovering many 
transiting GEMS.

Will GEMS keep being rare?

I. GEMS
2. Giant Planets
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II. TOI-5344 b as a new GEMS
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TESS observed ten transits of ~3% depth

★ TOI-5344 b was identified as a planet candidate in the QLP Faint Star Search 
(Huang et al. 2020; Kunimoto et al. 2022). 
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1. No stellar companion
a. Gaia RUWE = 1.035
b. NESSI Speckle imaging

No bright companions with Δ z < 3.0 are 
observed between 0.2’’ and 1.2’’ of the target.

Ruling out False-Positives:

2. No Detectable Stellar Rotation 
Signal

a. TESS GLS periodogram
b. ZTF* & ASAS-SN† GLS periodogram

II. TOI-5344 b
1. Stellar parameters

*Zwicky Transient Facility. †All-Sky Automated Survey for Supernovae.
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Spectral Energy Distribution (SED)
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Spectral Energy Distribution (SED)

M★= 0.59+0.02

II. TOI-5344 b
1. Stellar parameters

-0.03 M⊙

R★= 0.563 ± 0.016 R⊙

⇒ TOI-5344 is a M0 dwarf
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HPF*-SpecMatch†

*Habitable-zone Planet Finder (HPF). †Stefansson et al. 2020. 
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HPF*-SpecMatch†

Observe M-dwarfs 
with known stellar 

properties

Fit a Composite 
Spectrum for the 

target star

Minimize the 
residual & get 

stellar parameters 
for the target star

*Habitable-zone Planet Finder (HPF). †Stefansson et al. 2020. 
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1. Stellar parameters
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⇒ TOI-5344 has Super-solar 
Metallicity

HPF-SpecMatch on TOI-5344

II. TOI-5344 b
1. Stellar parameters

Teff= 3770 ± 88 K

[Fe/H] = 0.48 ± 0.12
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Comparing TESS FFI light curves
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Ground-based photometry: the Red Buttes 
Observatory

II. TOI-5344 b
2. Photometry

P = 3.792622 ± 0.000010 days
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HPF Radial Velocity

II. TOI-5344 b
3. Radial Velocity
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Planetary Parameters†

†from photometry & RV joint fit.

Mp= 135+17 

-18 M⊕

Rp= 9.7 ± 0.5 R⊕

Teq = 679 ± 14 K

= 0.42+0.05

-0.06 MJ

= 0.87 ± 0.04 RJ
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Why M dwarfs might struggle to form giants?

1. M-dwarf planetary disk might not 
have enough metal to form core

● Kanodia 2023 (in prep) shows ~ 100 M⊕

metal mass in the disk might be 
needed to form ~ 10 M⊕ core. 

2. The time-scale of forming such 
core might be longer than the gas 
depletion time

Runaway gas 
accretion

~ MJ

Metal 
Core 

~ 10 M⊕

III. GEMS Formation
1. Core accretion
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More Saturns, less Jupiters

Compared to Giants around 
FGK dwarfs (gray points), 
GEMS† seems to be smaller: 

† The sample consists of 17 Transiting GEMS.
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More Saturns, less Jupiters

Compared to Giants around 
FGK dwarfs (gray points), 
GEMS† seems to be smaller: 

NSaturns / NJupiters = 0.12FGK:

NSaturns / NJupiters = 0.42M:

† The sample consists of 17 Transiting GEMS.
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More Saturns, less Jupiters
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Planet Metal fraction† of GEMS are high

● Jupiter Metal fraction =  
0.057–0.103

● The high metal fraction 
suggests GEMS accretes 
relatively less gas (like 
Saturn)

III. GEMS Formation
2. More Saturns, less Jupiters

†Calculated following Thorngren et al. 2016
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Planet-Metallicity Correlation for M dwarfs

III. GEMS Formation
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Planet-Metallicity Correlation for M dwarfs

Giants ≡ 8 ≲ Rp ≲ 15

Non-giants ≡ Rp ≲ 8

III. GEMS Formation
3. Planet-Metallicity Correlation

⇒M dwarfs hosting giant 
planets appear to have 
higher metallicity than those 
hosting non-giants. 
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Two GEMS formation theories

III. GEMS Formation

If metal cores are 
formed in certain 
(high metallicity) 
disks before gas 

depletion

Metal 
Core 

~ 10 M⊕

High metallicity disk
⇒ high opacity†

⇒ slow heat dissipation 
⇒ slowed gas accretion

†Movshovitz et al. 2010
Gas

Metal 
Core 

~ 10 M⊕

Metal + Gas

Metal 
Core 

~ 10 M⊕

A prolonged intermediate 
stage of metal accretion 
offer energy to hinder 
rapid gas accretion. 

Helled 2023
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TESS-Gaia Light Curve (TGLC) 

II. TOI-5344 b
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A correlation between [Fe/H] and Planet density?
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A correlation between [Fe/H] and Planet density?

Kendall’s Tau test:

τ = 0.5268 

p = 0.0072

⇒ Suggesting a moderate 
correlation, but needs more 
data to confirm. 

III. GEMS Formation
2. More Saturns, less Jupiters
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The good and bad of finding M-dwarf Exoplanets:

1. Deeper transits
2. Usually dimmer
3. We have more M-dwarfs
4. RV signal larger
5. , but noisier

Giant Exoplanets around M-dwarf Stars (GEMS) are rare in theory and observation. 

I. GEMS
2. Giant Planets
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How to further understand these systems

GEMS JWST
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Helled 2023

31


	Slide 32
	Slide 33: What are GEMS?
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Defining GEMS: A rare class of Exoplanets
	Slide 44: Defining GEMS: A rare class of Exoplanets
	Slide 45: Defining GEMS: A rare class of Exoplanets
	Slide 46: Defining GEMS: A rare class of Exoplanets
	Slide 47: GEMS are rare in theory
	Slide 48: GEMS are rare in theory
	Slide 49: GEMS are rare in theory
	Slide 50: GEMS are rare in theory
	Slide 51: GEMS are rare in theory
	Slide 52: GEMS are rare in theory
	Slide 53: GEMS are rare in theory
	Slide 54: GEMS are rare in theory
	Slide 55: II. TOI-5344 b as a new GEMS
	Slide 56: TESS observed ten transits of ~3% depth
	Slide 57: Ruling out False-Positives:
	Slide 58: Ruling out False-Positives:
	Slide 59: Ruling out False-Positives:
	Slide 60: Ruling out False-Positives:
	Slide 61: Ruling out False-Positives:
	Slide 62: Ruling out False-Positives:
	Slide 63: Ruling out False-Positives:
	Slide 64: Ruling out False-Positives:
	Slide 65: Ruling out False-Positives:
	Slide 66: Spectral Energy Distribution (SED)
	Slide 67: Spectral Energy Distribution (SED)
	Slide 68: Spectral Energy Distribution (SED)
	Slide 69: Spectral Energy Distribution (SED)
	Slide 70: HPF*-SpecMatch†
	Slide 71: HPF*-SpecMatch†
	Slide 72: HPF*-SpecMatch†
	Slide 73: HPF*-SpecMatch†
	Slide 74: HPF-SpecMatch on TOI-5344
	Slide 75: HPF-SpecMatch on TOI-5344
	Slide 76: HPF-SpecMatch on TOI-5344
	Slide 77: HPF-SpecMatch on TOI-5344
	Slide 78: Comparing TESS FFI light curves
	Slide 79: Ground-based photometry: the Red Buttes Observatory
	Slide 80: HPF Radial Velocity
	Slide 81: Planetary Parameters†
	Slide 82: Planetary Parameters†
	Slide 83: III. GEMS Formation
	Slide 84: The (simple) core accretion theory
	Slide 85: The (simple) core accretion theory
	Slide 86: The (simple) core accretion theory
	Slide 87: Why M dwarfs might struggle to form giants?
	Slide 88: Why M dwarfs might struggle to form giants?
	Slide 89: Why M dwarfs might struggle to form giants?
	Slide 90: Why M dwarfs might struggle to form giants?
	Slide 91: More Saturns, less Jupiters
	Slide 92: More Saturns, less Jupiters
	Slide 93: More Saturns, less Jupiters
	Slide 94: More Saturns, less Jupiters
	Slide 95: More Saturns, less Jupiters
	Slide 96: More Saturns, less Jupiters
	Slide 97: More Saturns, less Jupiters
	Slide 98: Planet Metal fraction† of GEMS are high
	Slide 99: Planet Metal fraction† of GEMS are high
	Slide 100: Planet Metal fraction† of GEMS are high
	Slide 101: Planet-Metallicity Correlation for M dwarfs 
	Slide 102: Planet-Metallicity Correlation for M dwarfs 
	Slide 103: Planet-Metallicity Correlation for M dwarfs 
	Slide 104: Two GEMS formation theories
	Slide 105: Two GEMS formation theories
	Slide 106: Two GEMS formation theories
	Slide 107: Two GEMS formation theories
	Slide 108: Two GEMS formation theories
	Slide 109: Two GEMS formation theories
	Slide 110: Two GEMS formation theories
	Slide 111: Two GEMS formation theories
	Slide 112: Two GEMS formation theories
	Slide 113: Two GEMS formation theories
	Slide 114: Index                           page
	Slide 115: TESS-Gaia Light Curve (TGLC)  
	Slide 116: A correlation between [Fe/H] and Planet density?
	Slide 117: A correlation between [Fe/H] and Planet density?
	Slide 118: The good and bad of finding M-dwarf Exoplanets:
	Slide 119: How to further understand these systems
	Slide 120: Helled 2023

