The Origin of Universality in the Inner Edges of Planetary Systems

Konstantin Batygin (Caltech)
Alessandro Morbidelli (Observatoire de la Cote d’Azur)
Fred C. Adams (U Michigan-Ann Arbor)
Juliette Becker (U Wisconsin-Madison)
Jupiter \((M \approx 0.001 M_{\text{sun}})\)

Trappist 1 \((M \approx 0.09 M_{\text{sun}})\)

Kepler 256 \((M \approx 1 M_{\text{sun}})\)

\(P_{\text{Io}} \approx 1.8 \text{ days}\)

\(P_{\text{b}} \approx 1.5 \text{ days}\)

\(P_{\text{b}} \approx 1.6 \text{ days}\)
Formation of rocky super-earths from a narrow ring of planetesimals

Konstantin Batygin & Alessandro Morbidelli Nature Astronomy 7, 330–338 (2023) | Cite this article

- silicate-rich composition
- intra-system uniformity
- typical mass ~ few x Earth
- link to Jup, Sol
Orbital migration delivers planets to the disk’s inner edge, where they stabilize. Thus, at face-value, the data appears to suggest that disks are truncated at an orbital period of ~3 days, independent of the central mass…
$P_{\text{mag}} \sim P_{\text{ram}}$

magnetospheric truncation

disk accretion

B
We need a theory that will connect stellar field (B), radius (R), accretion rate (\dot{M}-dot) etc.

\[
\frac{B^2}{2\mu_0} \sim \frac{B_*^2}{2\mu_0} \left(\frac{R_*}{r} \right)^6 \sim \frac{\dot{M}}{4\pi r^2} \sqrt{\frac{2G M_*}{r}}
\]
\[
\frac{B_*^2}{2\mu_0} \left(\frac{R_*}{r} \right)^6 \sim \frac{\dot{M}}{4\pi r^2} \sqrt{\frac{2G M_*}{r}}
\]

\[
\dot{M} \sim \beta \frac{M_*}{\tau}
\]

disk accretion rate: \(\dot{M} \)

magnetospheric truncation frequency: \(\Omega \)
\[\frac{\langle B \rangle^2}{2 \mu_0} \sim \rho v_{\text{conv}}^2 = c f_{\text{ohm}} \langle \rho \rangle^{1/3} (\mathcal{F} q)^{2/3} \]
\[R_\ast \approx \left(\frac{b G M_\ast^2}{12 \pi q \tau} \right)^{1/3} \]

- bolometric flux
- central body undergoing gravitational (Kelvin-Helmholtz) contraction
- convective dynamo

\[
\frac{\langle B \rangle^2}{2 \mu_0} = c f_{\text{ohm}} \langle \rho \rangle^{1/3} (\mathcal{F} q)^{2/3}
\]
The Origin of Universality in the Inner Edges of Planetary Systems

Konstantin Batygin1, Fred C. Adams2,3, and Juliette Becker1

1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
2Physics Department, University of Michigan, Ann Arbor, MI 48109, USA
3Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA

Received 2023 March 22; revised 2023 June 1; accepted 2023 June 2; published 2023 July 3

\begin{align*}
\Omega &= 2 \xi \left[\frac{\sqrt{2}}{(3 b F)^2} \left(\frac{\pi \beta \gamma^2}{c f_{\text{ohm}}} \right)^3 \frac{(G \langle \rho \rangle)^3}{\tau} \right]^{1/7} \\
&\approx 2.4 \times 10^{-5} \text{ s}^{-1} \approx \frac{2 \pi}{3 \text{ day}}
\end{align*}