What happens when superflares from M dwarfs impact close brown dwarf companions?

A number of brown dwarfs are now known on <10 day orbits around actively flaring M dwarfs.

Their atmospheres are more readily observable than those of more common smaller planets.

Most known M dwarfs hosting Jovian planets have infrequent flares.

One example of a brown dwarf transiting an active M dwarf, as observed by TESS. Flares are marked by red vertical lines, all of which are >10^{32} erg, more energetic than the Carrington event.

My work: Simulate the brown dwarf atmosphere’s photochemical response to a flare and the observability of that response with high-resolution emission spectroscopy.

Previous studies in giant planets have identified CH_4, NH_3, C_2H_2, and HCN as photoreactive species – I am extending this work for higher gravities and higher temperature species appropriate for brown dwarfs.

Changes in mixing ratio might be observable in high-resolution (R>20,000) cross-correlation spectroscopy.

Why it’s important: Brown dwarf or giant planet atmospheres could provide a context for real-time observation of flare-driven photochemistry, with implications for smaller, habitable planets as well.

A single half-night of Keck/KPIC observations can produce a strong atmosphere detection, meaning we can look for day-to-day spectral variability and potentially correlate changes to individual flares.

Success would provide valuable observational grounding for the study of flare-impacts in planetary atmospheres – it could also aid atmosphere simulations of terrestrial planets around flaring M dwarfs.

Cross-correlation detection strengths as a function of system orbital velocity and brown dwarf Keplerian velocity (left) or frame-by-frame in a simulated observation (right).