WASP-18b phase curve

Shporer, Wong, et al. 2018, in prep.

Avi Shporer MIT

Image credit: Tunc Tezel, The World At Night

Photometric variability along the orbit: *Phase curves*

Gravitational: Beaming Tidal ellipsoidal deformation

Atmospheric: Reflected light Thermal emission (heating)

The Beaming Effect aka Doppler Boosting

Tidal Ellipsoidal Deformation

$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

Atmospheric: Reflection + Heating

$$A_{\rm refl} = \alpha_{\rm refl} 0.1 \left(\frac{R_2}{a}\right)^2 \sin i$$

Gravitational

Atmospheric

Reflection+heating

$$A_{\rm refl} = \alpha_{\rm refl} 0.1 \left(\frac{R_2}{a}\right)^2 \sin i$$

Unique period+phase for each component

WASP-18b:

P = 0.94 day $M_{p} = 10.5 \pm 0.5 \text{ M}_{Jup}$ $R_{p} = 1.20 \pm 0.05 \text{ R}_{Jup}$

 $T_{eff} = 6,431 \pm 48 \text{ K}$ $M_s = 1.46 \pm 0.29 \text{ M}_{Sun}$ $R_s = 1.26 \pm 0.04 \text{ R}_{Sun}$ $K_{RV} = 1,816.6 \pm 6.2 \text{ m/s}$

TESS Sector 2

WASP-18b Phase Curve

Measured: $A_{beam} = 24.2 \pm 5.7 \text{ ppm}$ $A_{ellip} = 194.1 \pm 7.3 \text{ ppm}$ Expected: $A_{beam} = 18 \pm 2 \text{ ppm}$ $A_{ellip} = 186 \pm 25 \text{ ppm}$

Both amplitudes agree with expectations

But not always: KOI-74 - van Kerkwijk et al. 2010; Bloemen et al. 2012 KIC 10657664 - Carter et al. 2011 TrES-2 - Barclay et al. 2012 HAT-P-7 - Esteves et al. 2013 Kepler-76 - Faigler et al. 2013 Kepler-13A - Shporer et al. 2011, 2014; Mazeh et al. 2012; Esteves et al. 2013 KIC 9164561 - Rappaport et al. 2015

WASP-18b Phase Curve

2nd eclipse = Thermal emission + Reflected light

2nd eclipse = 355 ± 21 ppm Expected thermal emission: 326 ppm

Night side = 2nd eclipse - $2 \times A_{refl}$ Measured: $A_{refl} = 190.6 \pm 7.9 \text{ ppm}$ \longrightarrow Night side < 44 ppm (2 σ)

 $A_{beam} = 24.2 \pm 5.7 \text{ ppm}$ $A_{refl} = 190.6 \pm 7.9 \text{ ppm}$

Phase shift < 3.2 deg (2σ)

WASP-18b Phase Curve Summary

 $A_{beam} = 24.2 \pm 5.7 \text{ ppm}$ $A_{ellip} = 194.1 \pm 7.3 \text{ ppm}$ Agree with expectations 2nd eclipse = 355 ± 21 ppm $A_g < 0.093$ (2 σ) Night side < 44 ppm (2 σ) Phase shift < 3.2 deg (2 σ)

Low albedo, inefficient day-night circulation, no phase shift➡Consistent with highly-irradiated gas-giant planets

First of a sample of atmospheres characterized by TESS

Period analysis while removing in transit+eclipse data

Injection and recovery simulation

WASP-18b phase curve

Shporer, Wong, et al. 2018, in prep.

Avi Shporer MIT

Image credit: Tunc Tezel, The World At Night