Irregular Satellite Collisions: A Formation Mechanism for Circumstellar Debris Rings

Kevin T. Hayakawa Advisor: Prof. Brad Hansen University of California, Los Angeles (UCLA)

Some directly imaged debris disks exhibit thin rings

- Fomalhaut
- HR 4796A

Kalas et al. (2013)

Are thin ring structures indicative of a hidden exoplanet and exomoon cloud?

ESO image of HR 4796A in 2014

What are irregular satellites?

- Minor bodies of the Jovian planets
 - \circ $\,$ Large semimajor axes, eccentricities, and inclinations $\,$
- Bottke et al. (2010) show they are highly collisionally evolved today
 - Have lost ~99% of starting mass (~0.001 lunar masses) over 3.9 Gyr
- Jewitt & Sheppard (2004) postulate they might be a generic consequence of giant planet formation

Bottke et al. (2010) ³

Our Model: Irregular Satellite Collisions

- Collisions among irregular satellites produce the dust found in debris disks
- Released dust is subject to radiation pressure, and thus may spread into a ring around star

Motivation: fundamental shift in forbidden zone when radiation pressure is "turned on"

Motivation: fundamental shift in forbidden zone when radiation pressure is "turned on"

β scales inversely with grain size

$$\beta = \frac{3L_* \langle Q_{rad} \rangle}{16\pi G M_* c \rho s},$$

$$\beta \approx 0.1 \left(\frac{s}{1 \ \mu m}\right)^{-1}$$

Burns et al. (1979)

	1	
	Wavelength	eta
Visible	400 - 700 nm	0.14 - 0.25
Near IR	780 - 2500 nm	0.04 - 0.13
Mid IR	2.5 - $15~\mu{ m m}$	0.007 - 0.04
Far IR	15 - $1000~\mu{ m m}$	10^{-4} - 0.007

We consider six representative values of β : 0, 0.01, 0.03, 0.05, 0.1, and 0.3

Synthetic images

- Library of orbits
- Effective probability distribution of where dust grains are spending most of their time

Hayakawa & Hansen 2018 (in prep)

Hayakawa & Hansen 2018 (in prep) 9

Hayakawa & Hansen 2018 (*in prep*) ¹⁰

Thin rings just outside forbidden zone

Hayakawa & Hansen 2018 (in prep) 11

103

10²

103

10²

10¹

102

10¹

10¹

101

100-10

 $10^{\circ} - 10$

 $10^{0} - 10$

 $10^{0} - 10$

-10

<u>^0−10</u>

10 10

0

0

0

0

0

Inertial x-axis (AU)

10¹

102

∎ 10¹

100

10²

∎ 10¹

10¹

100

= 10¹

100

10¹

100

E

10

10

10

10

10

Thin rings revisited

• Criterion for thin rings as laid out in Hughes et al. (2018):

eta	ΔR (AU)	R (AU)	$\Delta R/R$
0	0.267	5.81	0.046
0.01	0.275	5.81	0.047
0.03	0.433	5.77	0.075
0.05	0.369	5.74	0.064
0.1	0.445	5.57	0.080
0.3	0.500	5.03	0.099
HR 4796A	8.02	74.4	0.108
Fomalhaut	25	123	0.203

 $\beta \approx 0.1 \left(\frac{s}{1 \ \mu m}\right)$

Hayakawa & Hansen 2018 (*in prep*)

Summary

- Our goal was to test the plausibility of irregular satellite collisions reproducing the thin rings observed in Fomalhaut and HR 4796A
- Used N-body simulations and the Jacobi integral to investigate this hypothesis
- Identified a behavioral shift at β = 0.02 (s = 5 μ m) in both density profiles and eccentricity distributions
- Successfully reproduced thin rings similar to HR 4796A in a proof-of-concept model