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ABSTRACT

laxy has an optical depth to gravitational microlensing T &~ 107 °. If the halo is

. . ve'than ~10~% M, then any star in a nearby galaxy has a probability of 107° to
be strongly microlensed at any time. The lensing events last ~2 hr if a typical “dark halo” object has a mass

of 107° M, and they last ~2 yr for objects of 100 M. MAorAntormg thf: brlghtnes§_of a few rpllhpn_stfirs_ 19
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Flg. 2.—Time variation of the amplification due to gravitational microlensing for events with the impact parameter d/R, equal 0.1, 0.2, ..., 1.1, 1.2. The largest

amplitude corresponds to the smallest impact parameter. The unit of time is given as t, = R,/v, where R, is the radius of ringlike image formed when the source, the
lensing mass, and the observer are perfectly aligned (see eq. [2] and [16]) and v is the relative tangential velocity of the lensing object.
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GRAVITATIONAL MICROLENSING AS A METHOD OF DETECTING DISK DARK MATTER
AND FAINT DISK STARS
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ABSTRACT

Gravitational microlensing of stars in the Galactic bulge is proposed as a method of probing the mass
density of disk objects in the 1073 to 10! M, range. A substantial rate is found if disk dark matter of this
form exists, and even without any dark matter, a significant microlensing rate is found, owing to the faint
low-mass disk stars which are known to exist. Such a search would provide new information on the disk dark
matter question, probe the low-end stellar mass function, and also search for halo dark matter, all with rates
comparable to those expected for the ongoing LMC microlensing halo dark matter searches.

Subject headings: dark matter — gravitational lenses — stars: low-mass

The amount of mass in the disk of our Galaxy is quite
uncertain. The mass in stars is estimated from star counts and
is uncertain because much of the mass is contained in low-mass
stars which are intrinsically faint (Scalo 1986). The total local
disk mass is estimated by measuring the disk gravitational
potential using tracer stars, but again no consensus on the total
amount of disk matter has been reached (Oort 1960; Bahcall
1984; Kuijken & Gilmore 1989). A related unresolved question
is whether the mass in stars, dust, and gas is sufficient to
explain the total disk mass or whether a substantial amount of
disk dark matter must exist.

Gravitational microlensing has been suggested as a method
of detecting dark extragalactic objects using quasars as sources
(Gott 1981; Canizares 1982), and of detecting halo dark matter
using Large Magellanic Cloud (LMC) stars as sources
(Paczynski 1986). As a dark object moves close to the source-
observer line of sight, it acts as a gravitational lens, causing two
unresolved images to form and resulting in an overall magnifi-
cation of the image. While the probability per source is much
larger for the extragalactic microlensing, “local ” microlensing
has the advantage of being applicable to lenses in our Galaxy
and avoiding the uncertain and variable nature of quasar lumi-
nosities. Paczynski showed that repeated observation of ~ 10°
stars in the LMC should allow detection of the halo dark

that the rate of microlensing due to a canonical density and
distribution of halo dark matter is as large for bulge star
sources as for LMC sources (owing to the velocities of bulge
stars). We find that the rate of microlensing due to disk dark
matter (if it exists at the claimed densities) can be substantially
higher than this. We also find that even in the complete
absence of any dark matter, a substantial microlensing rate
exists because of the faint disk stars. Observation of lensing by
ordinary stars would be interesting, since it would test the
microlensing technique, and the rate and duration of micro-
lensing events would provide direct information on the density
of low-mass stars in the disk. The present-day mass function
(PDMF) would be probed especially at the low-mass end,
where the uncertainties are great, and even in the 0.001-0.07
M range, where almost no informavon now exists. This
determination of the low-end PDMF and/or measurement of
the amount of DDM would take place over an average of the
entire Galactic disk, not just in the local solar neighborhood,
as is now the case. If the observed microlensing rate is consis-
tent with that predicted by local PDMF determinations,
strong constraints could be placed on the density of disk (and
halo) dark matter in these mass ranges.

In this Letter, we first briefly review the local gravitational
microlensing basics and derive results for a simplified model of
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THE USE OF HIGH-MAGNIFICATION MICROLENSING EVENTS IN DISCOVERING
EXTRASOLAR PLANETS
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ABSTRACT

Hundreds of gravitational microlensing events have now been detected toward the Galactic bulge,
with many more to come. The detection of fine structure in these events has been theorized as an excel-
lent way to discover extrasolar planetary systems along the line of sight to the Galactic center. We show
that by focusing on high-magnification events, the probability of detecting planets of Jupiter mass or
greater in the lensing zone [(0.6-1.6)R.] is nearly 100%, with the probability remaining high down to
Saturn masses and substantial even at 10 Earth masses. This high probability allows a nearly definitive
statement to be made about the existence of lensing-zone planets in each such system that undergoes
high magnification. One might expect light-curve deviations caused by the source passing near the small
primary-lens caustic to be small because of the large distance of the perturbing planet, but this effect is
overcome by the high magnification. High-magnification events are relatively rare (e.g., ~1/20 of events
have peak magnifications greater than 20), but they occur regularly, and the peak can be predicted in
advance, allowing extrasolar planet detection with a relatively small use of resources over a relatively

small amount of time.

Subject headings: gravitational lensing — planetary systems

1. INTRODUCTION

Microlensing has become a useful tool in astronomy for
discovering and characterizing populations of objects too
faint to be seen by conventional methods. By repeatedly
monitoring millions of stars, several groups have now
detected the rare brightenings that occur when a dark
object passes between the Earth and a distant source star
(Alcock et al. 1993 ; Aubourg et al. 1993; Udalski et al. 1993;
Alard et al. 1995). These detections have now become
routine, with hundreds of events reported toward the
Galactic bulge, mostly by the MACHO -collaboration
(Alcock et al. 1996, 1997a). The reliable detection of large
numbers of such lensing events allows one to use them for
several auxiliary purposes. For example, relatively rare
microlensing “fine-structure” events, where deviations
from the simple brightening formula (Paczynski 1986;
Griest 1991) are apparent, can be searched for. These have
allowed several new effects to be observed, such as parallax
motion (Gould 1992, 1994b; Alcock et al. 1995), the finite
size and proper motion of the source star (Alcock et al.

planet last only a few hours or days (depending on the mass
of the planet) and can occur at any time during the much
longer (~40 days) primary lensing event. In order not to
miss these short excursions, round-the-clock monitoring
would be required, implying dedicated telescopes at several
locations. In return, dozens to hundreds of planetary detec-
tions could be made, more than by any other proposed
detection method. Thus, microlensing may be the best way
to gather statistics on the frequency, mass distribution, and
semimajor axis distribution of planets. Microlensing is also
sensitive to planetary systems throughout the Galaxy and
not just in the solar neighborhood, as are most other planet
search techniques. The main disadvantage to microlensing
is that further study of individual systems is probably
impossible.

Following the early work, contributions have been made
by several other groups. Bolatto & Falco (1994) calculated
detection probabilities; Bennett & Rhie (1996) and
Wambsganss (1997) extended to Earth-mass planets by
including the finite source effect; Gaudi & Gould (1997)
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Search for Gravitational Microlenses

First Generation of Large Scale Surveys
MACHO Project — Mt. Stromlo, Australia (1992 — 1999)
EROS Project — ESO, Chile (1992 — 2002)

OGLE Project — Las Campanas, Chile (1992 —...)

MOA Project — Mt. Johns, New Zealand (199/7-...)
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‘IWE fiat rotation curves of spiral galaxies, including our own,
indicute that they are surrounded by umseen halocs of ‘dark
matter' "%, In the ahsence of a massive halo, stars and gas in the
outer portives of a galaxy would orbit the centre more slowly, just
as the outer planers in the Solar System circle the Sun morc slowly
than the inner oues. So far, however, there has been no direct
observational evidence for the dark matter, or its characteristics.
Paczyiski® suggested that dark bodies in the halo of vur Galaxy
ional ‘microlenses’, ampli-
fying the light from stars in nearby galaxies. The duration of such
an event depends on the mass, distance 2nd velocity of the durk
object. We have been monitoring the brightuess of three million
stars in the Large Magellanic Cloud for over three years, and
here report the detection of two possible microlensing events. The
brightening of the stars was symmetrical in tisne, achromatic
not repeated during the monitoring period. The timescales of the
two events are about thirty days and imply that the masses of the
lensing objects lic between a few hundredths and one solar mass.

The number of events observed is consistent with (he number

expeeted if the halo is dominated by objects with masses in this

range.
The ‘EROS® (Expérience de Recherche d'Objets Sombres) col-
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abundant evidence for the presence of lirge quanti-
matter surrounding normal galaxies, including our
ture of this ‘dark matter’ is unknown, except that
ade of normal stars, dust or gas, as they would be
- Exotic particles such as axions, massive neutrinos
Iy Interacting massive particies (collectively known
tve been proposed™, but have yet to be detected. A
rnative is normal mattcr in the form of bodies with
t from that of a large planet to a fow solar masses,
nown collectively us massive compact halo obiects®
aight be brown dwarfs or ‘jupiters’ (bodies (oo small

ir Own onoray hy facinn) nantean stam Ald white

lurge. but these avents are extremely rare; for this reuson our
survey was designed to follow >ten million stars over several
years.

The survey employs a dedicated 1.27-m telescope at Mount
Stromlo. A ficld-of-view of 0.5 square degrees is achieved by
operating at the prime focus. The optics include a dichroic beam-
splitter which allows simultancous imaging in a ‘red’ bheam
(6,300-7,600 A) and u ‘blue’ beam (4,506,300 A). Two large
charge-coupled device (CCD) cameras'' are employed at the two
foci; cach contain 4 2x2 mosaic of 2,048 x 2,048 pixel Loral
CCD imagers. The 15-um pixel size corresponds Lo 0.63 arcsec
on the sky. The images are read out through a 16-channel system,
and written into dual ported memory in the data acquisition
computer, Our primary target stars are in the LMC, We also
monilor stars in the Galactic bulge and the Small Magellanic
Cloud. As of 15 September 1993, over 12,000 images have been
taken with the system.

The data are reduced with a crowded-field photometry routine
known as Sodophot, derived from Dophot™. First, one image
of each field that was obtained in good seeing is reduced in a
manner similar to Dophot to produce a ‘template’ catalogue of
star positions and magnitudes. Normally, bright stars arc
matched with the template and used to defermine an analytic
point spread function (PSF) and a coordinate transformation.
Photometric fitting is then performed on each template star in
descending order of brightness, with the PSF for all other stars
subtracled from the frame. When a star is found to vary signifi-
cantly, it and its ncighbours undergo a second iteration of fitting.
The oulput consists of magnitudes and crrors for the two col-

questionable measurements, that arise from cosmic ray cvents
in the CCDs, bad pixels and s0 on

These photometric data are subjected to an automatic time-
series analysis which uses a set of optimal filters Lo search for
microlensing cundidates and variablo stars (which we have
detected in abundance'). For cach microlensing candidate a
ight curve is fitted, and the final sclection is done automatically

ing criteria (for example, signal-to-noise, quality of fit, wave-
' indanandance of the light curve and colour of the star)

using Monte Carlo addition of
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Microlense:
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The Optical Gravitational Lensing Experiment.
Discovery of the First Candidate Microlensing Event
in the Direction of the Galactic Bulge'

by
A. Udalski, M. Szymanski, J. Katuzny, M. Kubiak,
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The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street,
Pasadena, CA 91101 USA

and
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ABSTRACT

We report the discovery of the first candidate microlensing event to be discovered in the direction
of the Galactic Bulge. The peak brightness of the candidate event occurred on June 15, 1993. The
event had time scale (/?9/1", 7y — the Einstein radius, } - the transverse velocity of the lens) equal
to 23.8 £ 0.9 day and amplification A = 2.4 = 0.1. The lensed star is at the turn-off point in the
Galactic Bulge. The lensing object is likely to be a disk M-dwarf of about 0.3 M... .

Key words: gravitational lensing — Galaxy: halo — Stars: low mass, brown dwarfs

The possibility of use gravitational microlensing as a probe of the dark, unseen
matter in our Galaxy was originally proposed by Paczynski (1986, 1991) and further
developed by Griest (1991) and Griest et al. (1991). Because the probability of a
star being microlensed at any given moment turns out to be very small, only a large-
scale photometric survey in dense stellar fields is suitable to search for microlensing
events. Candidate regions of the sky include dense fields in the directions of the
Magellanic Clouds and the Galactic Bulge where lensing events by halo objects can
be potentially detected. Lensing events due to disk objects can also be expected in

' Based on observations obtained at the Las Campanas Observatory of the Carnegie Institution of
Washington.

% Current address: Department of Astronomy, University of Michigan, 821 Dennison Bldg., Ann
Arbor, MI 48109-1090 USA.

(1993).
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FIG. 1.—Geometry of microlensing by a binary, as seen in the sky. The
primary star of 1 M is located at the center of the figure, and the secondary of
0.1 Mg or 0.001 M, is located on the right, on the Einstein ring of the
primary. The radius of the ring is 1.0 mas for a source located at a distance of §
kpc and the lens at 4 kpc. The two complicated shapes around the primary are
the caustics: the larger and the smaller corresponding to the 0.1 M, and
0.001 M, companions, respectively. If a source is located outside these
regions, then only three microimages are formed, while a source inside them
forms five microimages. The parallel straight lines indicate the trajectories of
sources for which the light variations are shown in Fig. 2.

that the secondary has a mass of only 0.001 of the primary, i.c.,
like that of Jupiter. They differ from the light curves corre-
sponding to ¢ = 0.1 in having a much shorter time interval
during which the double nature of the lens is striking.
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FIG. 2—The light curves shown correspond to the six source trajectories in
Fig. 1. The source is modeled as a uniform disk of radius R,,,, = 10! ¢cm. The
first six light curves, a—f, correspond to the case with a 0.1 M © companion; the
last two, cp and dp, correspond to the case with a 0.001 M © companion.
Notice very high spikes when a source crosses a caustic, or approaches a cusp,
as in the light curves c, d, and cp. The low-amplitude light curves a, e, f, and dp,
are shown together with the dashed light curves expected for single-mass
microlenses matching the wings.

of the caustic region defined as



25 Years Perspective:
Three Main Scientific Contributions

Search for Dark Matter
Galactic Structure Studies
Extrasolar Planets — Planetary Microlensing
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THE MACHO PROJECT: MICROLENSING RESULTS FROM 5.7 YEARS OF LARGE MAGELLANIC

CLOUD OBSERVATIONS
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1. INTRODUCTION

Following the suggestion of Paczynski (1986), several
groups are now engaged in searches for dark matter in the
form of massive compact halo objects (MACHOs) using
gravitational microlensing, and many candidate micro-
lensing events have been reported. Reviews of microlensing

in this context are given by Paczynski (1996) and Roulet &
Mallaracrh (1004
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Spitzer Space Telescope * IRAC

ssc2007-XX  Li¥ S

Previously (Alcock et al. 1997a), we conducted an
analysis of 2.1 yr of photometry of 8.5 million stars, and
found 6-8 microlensing events, implying an optical depth
toward the LMC of 29724 x 10”7 for the 8 event sample
and 2.17}1 x 1077 for the 6 event sample (Alcock et al.
1996a, 1997a; hereafter A96 and A97, respectively). Inter-

preted as evidence for a MACHO contribution to the Milky
Wayw dAarlr hala thic imnlied a MACHO mace ant o S0 e
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MACHO's halo mass fraction
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The OGLE view of microlensing towards the Magellanic Clouds - IV.
OGLE-III SMC data and final conclusions on MACHOs*
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Galactic Structure

Optical depth for microlensing toward CG

High resolution spectroscopy of highly
microlensed bulge dwarfs



Keck HIRES Spectroscopy of
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mMMl d“\mlnl«wl r}lp"ﬂilf ',Iﬂl\'w;v]aflrpw( rmw‘*r\-xlnr..#-']"“"ﬁ'ﬁ it Vw l’mf l’i

. {115 |

6220 G240 6260 G260 G300
Wavelength (Angstroms)

[ r 1T rrrJrrr 1
A =21

1 I
13.5 |— uFUN Perth  MOA —
i \ _
3\
Heck 300s A=151 \ _
/ \

Heck 600s A=134)(

o —
%
14— f ‘M\‘&PLANET SAAD  —
- /Q‘UBN ET Hawail \' .
H— \{ —

- ‘ 4
w,
|V
;;OGLE PLANET Chile 1

15 | I | B I 11 | | 1 1 1 I N |
38928 3893 3893.2 38934 38936  3893.8

I(OGLE)

uFUN Chile |




OGLE-IIl Revolution:
Detection of Microlenses by OGLE

OGLE-I (1992-1995) ~20 events
OGLE-II (1997-2000) ~500 events
OGLE-IIl (2001-2009) ~4000 events

OGLE-IV (2010- ... ) ~2000 events per season
(~10 per night)

Since 1994 — real time detection — OGLE EWS
system



OGLE-2003-BLG-235/MOA-2003-BLG-53
First Planetary Microlensing
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Planet/star mass ratio: g~0.004
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OGLE-2005-BLG-390
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Planet/star mass ratio: g~0.00008. Mass of the planet:
~6 Earth masses. The least massive planet at the discovery



OGLE-IV: 2010 —....

32 chip 256 Mpixel mosaic CCD camera (+ 2 chips for
guiding)

2048 x 4102 pixel E2V 44-82 DD CCD detectors
(15 um).
1.4 square degrees field (~7 Moon disks), scale — 0.26"/pixel
20 sec. reading time
First light September 7, 2009
Regular observations since March 4/5, 2010
30-50 TB of raw data per year
~3 mmag accuracy (DIA photometry since 2001)



(@)@ ]—L,] E': — an Extremely Large Sky Variability Survey

in operation since 1992 :
since 2010 as OGLE-IV (Udalski et al. 2015)

3500 deg? sky coverage

1.3 billion sources monitored every night
10"? photometric measurements by 2016
over 17,000 microlensing detections

more than 70 extrasolar planets discovered
~1,000,000 new variable stars
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Las Campanas Observatory, Chile
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OGLE-IV SKY: 1.4 deg” FOV, I~21mag

~6 million
stars in
this
picture!




OGLE Targets
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OGLE-IV Microlensing Pointings




Detection of Microlenses by OGLE

OGLE-I (1992-1995) ~20 events
OGLE-II (1997-2000) ~500 events
OGLE-IIl (2001-2009) ~4000 events

OGLE-IV (2010- ... ) ~2000 events per season
(~10 per night)

Since 1994 — real time detection — OGLE EWS
system
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Space Microlensing

Finding Planets With Microlensing

Astronomers use a technique called microlensing to find distant planets in the heart of our
galaxy, up to tens of thousands of light-years away. This infographic illustrates how NASA's
Spitzer Space Telescope, from its perch in space, helps nail down the distance to those planets.

Foreground star & planet... ©

(not seen by telescopes)

s ... pass in front of
. gy < . -’ -

A microlensing event occurs when a faint star passes in front of a distant, more visible star. The ® d Istant star

gravity of the foreground star acts like a magnifying glass to brighten the distant star. If a planet G (seen by telescopes)

is present around the foreground star, its own gravity distorts the lens effect, causing a brief dip -" ~

in the magnification.

The great distance between Earth and Spitzer helps astronomers determine the distance to the
lensing planetary system. Spitzer can see lensing events before or after telescopes on Earth, and
this timing offset reveals the distance to the system.

_ gk\‘ i Spitzer sees Ground-based telescope
A\ s - - 5 .
8 &> - planet microlensing ¥ ; seesplanet microlensing
.\@e(' 5\ 7 event first gj % event later
S0 ;

Spitzer is about 40%
farther from the Earth than
the Earth is from the sun

Planet causes dip in i %

magnified star brightness




Main Goals

The determination of the distribution of lens distances

Part of them planetary — distribution of planetary systems across
the Galaxy

2014 Spitzer campaign — ~100 hours: pilot campaign
2015 Spitzer campaign — ~900 hours/40 days for microlensing!
2016 Spitzer campaign — ~150 hours

2016 Kepler K2C9 pointing toward the Galactic bulge.
~3.7 square degrees monitored simultaneously with
OGLE et al. Additional targets during K2C11



Space Microlensing
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OGLE-2014-BLG-1050
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OGLE-2014-BLG-0939
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2015 Spitzer campaign — ~900 hours/40 days for
microlensing!

170 microlenses observed by Spitzer simultaneously with
OGLE et al.
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Kepler — K2

OGLE-IV field ;‘x‘ialactic coordinates
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K2C3v3 & OGLE-IV
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OGLE 2016 ulensing Gallery

OGLE-2015-BLG-1972
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2017 Microlensing Season

« Lower cadence of the central fields

« Finishing OGLE non-microlensing projects
competing for BLG time



Detection efficiency

OGLE Microlensing Statistics

« ~17 000 Microlensing Events discovered by
OGLE (~90% of all detected ulenses)

 OGLE-IV: ~2000 ulenses/observing season (in
real time — OGLE EWS system)

« Unique homogeneous data set for statistical
studies
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Exoplanets: Transit Method
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Transiting OGLE Exoplanets
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OGLE Collection of Variable Stars

OGLE-IV data discoveries supplemented with previous OGLE-
lll, OGLE-Il and OGLE-I detections

~25 years time span, very precise photometry

High completeness (>90%) and classification purity
Open project — recent extensions:

RR Lyrae in the Galactic Center (>38 000 objects)

Classical and Anomalous Cepheids in the Magellanic System
(~9 800 objects)

RR Lyrae in the Magellanic System (~45 000 objects)

Eclipsing stars in the Galactic Center and Magellanic System
(~500 000 systems)

~one million OGLE variable stars
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Galactic Structure from RR Lyrae Stars
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Galactic Structure from RR Lyrae Stars
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Classical Cepheids in the Magellanic Clouds

e

Classical Cepheids




Structure of the Magellanic System via
Cepheids
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RR Lyrae Stars in the Magellanic Clouds

RR Lyrae stars

® globular clusters
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Structure of the Magellanic System
via RR Lyrae
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Las Campanas — Warsaw Telescope — LCO Sky
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Variability Survey
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Galaxy and OGLE-GVS

'5.‘:‘/'! 5,000 *\/.

Credit: NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech



Distribution in our Galaxy
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Distribution in our Galaxy
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Transients 2016

~ 2000 Microlensing Events per Season
Novae

CVs

SNe



LETTER

i:10.1038/nature19066

2002 2004 2006 The awakening of a classical nova from hibernation

Przemek Mréz!, Andrzej Udalski’, Pawel Pietrukowicz!, Michal K. Szyman Igor Soszyniski', Lukasz Wyrzykowski',
Radoslaw Szymon Kozlowski’, Jan Skowron', Krzysztof Ulaczyk™, Dorota Skowron® & Michal Pawlak’

Cataclysmic variable stars—novae, dwarf novae, and nova-likes—  theory gained some support from the discovery of ancient nova
2790 2,82( are close binary systems consisting of a white dwarf star (the shells around the dwarf novae Z Camelopardalis’ and AT Cancri®,
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Dwarf Novae in OGLE
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