Planning hybrid follow-up strategies for turning microlenses into cold worlds

Markus Hundertmark & the RoboNet team

Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut

February 1, 2017

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 Planning hybrid follow-up strategies Motivation

LCO global network

- Key project "Exploring Cool Planets Beyond the Snowline" ¹
- Regular operations: 2014-2016, pilot phase 2013

¹PI: R. Street

Underlying philosophy

- Easy operations first
- Analytic expressions
- Interpolants where appropriate
- Keep results in memory

Motivation

TAP in action - pilot phase

• Pilot phase (observation manager scheduled events)

• EOI: evens of interest (external requests)

TAP in action - regular operations

• LCO scheduler active since May 1st

Anomalies: daily operations interaction (cadence, exptime)

2014

Real-time and post-season status (2013)

• $\sim 10\,\%$ of all regular events turn out to be anomalous (mostly in high-cadence fields)

Requested targets and achieved cadence

• Precedence was given to low-cadence observations

What limits our ability to characterise planets?

Planet mass estimates

$$M_{
m p}=rac{\mu t_{
m E}}{\kappa \pi_{
m E}}rac{q}{1+q}$$
; \kappapprox 8.14 $rac{
m mas}{M_{\odot}}$

Planet mass uncertainties

$$\sigma_{M_{\rm p}} = \frac{\mu q t_{\rm E}}{\kappa \pi_{\rm E} \left(1+q\right)} \left(\frac{\sigma_{\pi_{\rm E}}^2}{\pi_{\rm E}^2} + \frac{\sigma_{\mu}^2}{\mu^2} + \frac{\sigma_{q}^2}{q^2 \left(1+q\right)} + \frac{\sigma_{t_{\rm E}}^2}{t_{\rm E}^2}\right)^{1/2}$$

 \Rightarrow The term with maximum relative uncertainty limits us.

Detection zones contribute to characterisation

Information content for $t_{\rm E}$ and mass ratio q in a $u_0 = 0.15$ event

- Planet perturbation coincides with sensitivity in q
- Rule of thumb: 10-15 points sufficient for characterization

False-positives and priority function

- Priority Ω_S:
 Planet probability per invested time
- Thresholds based on full-season simulation^a
- Fractions of overand underrated events
- How early can we obtain a reasonable estimate?

^aDominik et al. 2010

RoboNet sensitivity 2013 & 2014

- Non-anomalous events: 181
- Peak sensitivity 20%
- 1/2 candidates from anomaly monitoring
- \bullet > 1 planet per year
- Candidates from RTModel (Bozza 2010)

Remarks on the sensitivity estimates

- Mass function: requires number of detections, campaign sensitivity & corresponding uncertainties
- Even for log q: Galactic model and $t_{\rm E}$ rejection of brown dwarfs and free-floating planets
- "Single star mass(-ratio) function": Detected binaries 2-3% (Tsapras et al. 2016), actually 20-30%
- Blending: correlated with $t_{\rm E}$, thus relevant for mass function estimates

Planning hybrid follow-up strategies Detecting means characterising

For an independent study: baseline

- Event centered follow-up does not guarantee baseline coverage
- > 700 events $(15' \times 15')$ in 4 years
- Data-mining opportunity for the future

For an independent study: baseline

- Event centered follow-up does not guarantee baseline coverage
- >700 events (15' \times 15') in 4 years
- Data-mining opportunity for the future

Conclusions

- Hybrid strategies increase the chance to cover planetary events (5 planet candidates per year for LCO Key project)
- Human-interaction was limited to anomalies and their cadence
- Initial two-years were optimized for targets within the OGLE footprint
- Insights from 2015: more sensitivity has not lead to more detections

Thank you to all teams supporting our efforts!