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Super-Earth and Sub-Neptune Planets
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Sub-Neptune size/mass planets are common!

Microlensing:

* Beyond the snow-line, Neptune-mass planets are
at least three times more common than Jupiters
at the 95% confidence level. Sumi et al. (2010)

* 62+36% of stars have a 5-10 M, planet at

0.5-10 AU. Cassan et al. (2012)
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Planets Detected both Dynamically and
In Transit are Valuable!

Stellar Wobble Transits

Planet Mass Planet Radius
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Non-Kepler Planets

Non Kepler Planets
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New Kepler Planet Masses from Keck RVs
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Adding Incident Flux Dimension

Seager et al. (2007) M-R Relations
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Model Overview

dr K

dm N 47re

Radiative H/He p=p(P, T)
(Using an Analytic Model ‘
From Guillot (2010))




How Materials Behave at High Pressure

Asymptotic
Lab Experiments Theories
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Model Overview

dr K

dm N 47re

Radiative H/He p=p(P, T)
(Using an Analytic Model ‘
From Guillot (2010))




Extending MESA to Model
Low-Mass planets with H/He envelopes
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Mass Loss Sculpts Close-In Planet Populations

Envelope mass-loss
timescale maximized

0.1 AU, 4.5 Gyr, Che at 1%-5% H/He

High-Mass planets
not strongly affected
by mass loss

log planet mass [M]
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Low M, planets
qguickly lose low
M., envelopes k

Higher M,,,,/M, have
higher R, and higher
cross-section to ionizing
radiation
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Unbound
Configurations

(e.g., Lopez & Fortney 2014, Owen & Wu 2013, Howe et al. 2014)



Transits
+ RVs and/or TTVs

Planet Bulk
Composition Constraints

Insights into Planet
Evolution and Formation History
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Sample of Small Planet M-R
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Which Planets Are Rocky?
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Volatile-Rich

Which Planets Are Rocky?
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Which Planets Are Rocky?
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Abundance of Low Density planets Constrains Fraction of
Planets in Underlying Population that are Rocky, f, .. (R,)
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Most 1.6 R, planets are
not Rocky.

Note: Most planets in
sample have P < 50 days.

Rogers (2015)



Which Planets Are Rocky?

3.5

Volatile-Rich

Planets from quickly (within
a few Myr) in the presence
of a gas disk.
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Earth-Mass Cores in Gas Disk Will Accrete H/He

(e.g., Rogers et al. 2011, Piso & Youdin 2014,
Lee et al. 2014, Inamdar & Schlichting 2015)
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There are competing theories for how these
close-in sub-Neptune-size planets formed

Snow Line
I

?yo)nd Snow Line

Young Star

Protoplanetary Disk

v

In Situ : :

e.g., Hansen & Murray, (2012), Chiang + Inwa rd M |grat|0n
& Laughlin (2013), Bodenheimer & e.g., Terquem & Papaloizou (2007),
Lissauer (2014), Lee & Chiang (2016), Cresswell & Nelson (2008), Rogers et al.
Batygin et al. (2016) (2011), Chatterjee & Ford (2015),

¢ Inamdar & Schjichting (2015)

Rocky Heavy Element Interior
(Trace Amounts of Water)

Ice-Rock Heavy Element Interior




Range of Compositions Consistent with Planet M and R
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Searching for Water in Distant Worlds

Potential future approaches to constrain the bulk water content of distant

exoplanets:
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Study the planet interior-
atmosphere connection to
identify atmospheric
abundance patterns that
could be used as robust
indicators of water in the

\deep interior.
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Consider large numbers of
observed exoplanets to
identify sub-populations and
trends in the planet M -R;
distribution, breaking some

of the degeneracies in
exoplanet compositions.




Empirical Insights Into Low-Mass Planet Interior
Structure, Formation and Evolution

Volatile-Rich Planets
* Most 1.6 R_,,,, planets have voluminous volatile
envelopes.

 Abundant population of close-in low-mass low-density
planets formed quickly (within a few Myr) in the
presence of a gas disk.

H — Ongoing debate whether heavy-element embryos
Envelope form in situ or migrate from beyond the snow-line




Which Planets Are Rocky?
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oIk Note: Most planets in
sample have P < 50 days.

“Rocky planet” population

4 could be remnant cores of
planets that lost their
volatile envelopes.
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Ea rt h vVersus M ercu ry . Relative sizes

r 0 km
2,440 km

6,378 km

Upper mantle

Lower mantle

Liquid outer
32.5% by
mass in iron-
dom I nated Solid inner
core o 70% by mass in iron-

dominated core



Introducing t anetary System

Kepler-36 A
M, =1.071+0.043 M,
R,=1.626+0.019 R,
T.e = 5911 + 66 K

e

Kepler-36 b

M, =4.3210.20 Mg
R,=1.48610.035 R4
P=13.83989d

Kepler-36 c
M, = 7.8420.35 Mg

R,=3.67910.054 Ry
P=16.23855d

Parameters from:
Carter et al. (2012)
Deck et al. (2012)



Kepler-36 b Mass Measured within 4.2%,
Radius Measured within 1.8%

Earth Composition

Fe
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Kepler-36 b is Consistent with an Earth-like Composition

9 | | | | |
il All Initial Conditions
8t MgSiO 1.1 Long-Lived Region
. |y Mixed Long-Lived Orbits
g7 '. '
S gl ::} ]
_'G:) T..
’ . |
& 2] M, =4.40£0.18 Mg, |
B 4 R,=1481£0.027R; b | 1;_: _
S | Moore/M, = 033005 | _
©
| % _
0 | | | I
0 0.1 0.2 0.3 0.4 0.5

Core Mass Fraction



Rocky Exoplanets (with with 6,,/M <20%) also
Con5|stent W|th Earth I|ke Bqu Composmons

|

Planet Radius (R-...)

KOI 1843 03
* jsatleast asiron-rich as Mercury
* M/M,>0.7
M,>"~0.3 Mg
e p>7gcm3
4 (Rappaport et al. 2013)
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Dessing et al. (2015), Zeng & Sasselov (2016), Buchhave et al. (2016)



. \'J | : [~
a +0.12.,
P, = 4.2 hours

»




Roche Limit
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Roche Limit
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Roche Limit
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Roche Limit
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1 gcem3

Ellen Price
Harvard Grad Student
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Revised Constraints on the Properties of KOI-1843.03
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Empirical Insights Into Low-Mass Planet Interior
Structure, Formation and Evolution

Volatile-Rich Planets
* Most 1.6 R_,,,, planets have voluminous volatile
envelopes.

 Abundant population of close-in low-mass low-density
planets formed quickly (within a few Myr) in the
presence of a gas disk.

H/He — Ongoing debate whether heavy-element embryos
Envelope form in situ or migrate from beyond the snow-line

Rocky Planets Most rocky planets with measured M-R (including

Kepler-36b) are consistent with an Earth-like
composition.

— KOI-1843.03 is Fe-enhanced exo-Mercury

* Rocky planets with M-R measurements could be
remnant cores of planets that lost their volatile
envelopes.




Microlensing: Completing the Exoplanet Census
Number of planet detections (assuming 1 per star)
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Combining/Comparing Kepler and Microlensing Statistics

Poster: Andrew Neil
Talk: Angie Wolfgang

Kepler: Microlensing:
Planet Radius Planet Mass
Close-in Planets (P <~1 year) Cold Planets (a~snow line)
FGK stars with some M dwarfs M dwarfs with some FGK

Need: Probabilistic M ,-Composition-R -Insolation-M. distribution

A Universal probabilistic M-R relation is insufficient because:
* Less irradiated volatile envelopes are smaller

e Composition trends due to evolution (e.g., mass loss)
 Composition trends due to formation



Empirical Insights Into Low-Mass Planet Interior
Structure, Formation and Evolution

Volatile-Rich Planets
* Most 1.6 R_,,,, planets have voluminous volatile
envelopes.

 Abundant population of close-in low-mass low-density
planets formed quickly (within a few Myr) in the
presence of a gas disk.

H/He — Ongoing debate whether heavy-element embryos
Envelope form in situ or migrate from beyond the snow-line

Rocky Planets Most rocky planets with measured M-R (including

Kepler-36b) are consistent with an Earth-like
composition.

— KOI-1843.03 is Fe-enhanced exo-Mercury

* Rocky planets with M-R measurements could be
remnant cores of planets that lost their volatile
envelopes.




