


Model Selection - Which Curve?



Data Modelling
There are two distinct requirements for a complete 
analysis.

➢ Parameter Estimation 
Find the parameter values that achieve closest fit to the 
data.

➢ Model Selection
Choose the best model between competing/alternative 
models. 



Model Selection 
➢ Traditional Method:
Chi-squared ( ᷣ2 ) Goodness of Fit 

+
Qualitative analysis to avoid physically implausible 
parameter values, overfitting. (Apply Occam’s 
Razor, experimental & theoretical arguments from 
prior knowledge to inform the choice...)

➢ Alternative 
Bayesian Inference



Bayes Theorem:

Posterior × Evidence = Likelihood × Prior

Bayesian Data Modelling

★ Concise statement about our state of knowledge 
before and after data is considered.



Posterior × Evidence = Likelihood × Prior

Prior 

What we know about 
the parameters before 
considering the data.



Posterior × Evidence = Likelihood × Prior

Likelihood

Quantifies the degree to which 
the model prediction and data 

agree.
Example Function: 

Log-likelihood = Constant -  ᷣ2 / 2 



Posterior

What we know about the 
parameters after 

considering the data.

➔ Parameter Estimation 

Posterior × Evidence = Likelihood × Prior



Evidence

Probability that a particular model 
gave rise to the data (irrespective 

of the parameter values.)

➔ Model Selection

Posterior × Evidence = Likelihood × Prior



 Evidence

➢ An  integration over the entire parameter space 
of the model  → prior-weighted average of the 
likelihood.

➢ More complicated models with larger 
parameter spaces get penalised → Occam’s 
Razor quantitatively implemented.

➢ Straightforward model selection but expensive 
to compute!



Nested Sampling 
➢ John Skilling (2004).

➢ Computes the evidence integral, numerically, as 
a summation, thus affordable. Posteriors 
computed as a by-product.

➢ Essentially, N live points are sampled from a 
prior space, sorted according to their 
log-likelihood values and at each iteration the 
lowest log-likelihood value point is replaced by 
one with a higher log-likelihood.



Multi-modal Nested Sampling 

More efficient by 
clustering the live 
points into ellipsoids 
and sampling new 
points only from these 
ellipsoids.

Image Credit: Feroz, et al.



Advantages 
➢ Quantitative implementation of Occam’s Razor.

➢ Easy to avoid implausible physical parameter 
estimations by constraining  Bayesian priors 
using prior knowledge of typical parameter 
values.

➢ Simultaneous model selection and parameter 
estimation as a by-product.





Simulated Event  

Parameter Actual Values

q  0.03

d  2.0

t0  7050.0

tE 65.0

ᶞ0 0.01

ρ  0.0005

α 3.0



 Simulated Event 

Variable Prior Intervals 

q  [1e-2, 0.2]

d  [0.01, 1.0], [1.0, 2.0]

t0 [7050.0,7055.0]

tE [60.0,80.0]

ᶞ0 [0.005,0.007]

ρ [7e-5,2e-4]

α [2.5,3.0]

ᷜEN [-0.5, 0.5]

ᷜEE [-0.5, 0.5]

Blind search in a prior space of full range of typical parameter values → not feasible, so:



Simulated Event  

Parameter Actual 
Values

MLE

q  0.03 0.02

d  2.0 1.9

t0  7050.0 7050.61

tE 65.0 78.32

ᶞ0 0.01 0.01

ρ  0.0005 0.0002

α 3.0 3.0

➢ MultiNest run for 4 days.

➢ Estimated parameter values 
resemble the actual values used to 
generate the data (more or less).



Simulated Event  

Finite Source Binary 
Lens Model 
Solutions

ℓn Z ᷣ2 /dof

With Parallax 
(Wide Orbit)

9936.95 ± 0.55 199.89 / 191

Without Parallax 
(Wide Orbit)

9936.62 ± 0.56 310.96 / 193

With Parallax 
(Close Orbit)

9906.42 ± 0.58 249.14 / 191

Without Parallax 
(Close Orbit)

9904.95 ± 0.58 393.52 / 193

ᷣ2 method - choose the model 
with the parallax included because 
of the large improvement in ᷣ2.

Bayesian Evidence method - 
indistinguishable by evidence 
value comparison alone so we 
choose the simpler model with 7 
parameters - without parallax.



Simulated Event  



Variable Prior Intervals 

q  [5e-4, 5e-3]

d  [0.4, 1.0] & [1.0, 2.5]

t0 [5781.3, 5781.5]

tE [60.0, 70.0]

ᶞ0 [0.04, 0.06]

ρ [0.001, 0.02]

α [4.0, 5.0]

ᷜEN [-0.5, 0.5]

ᷜEE [-0.5, 0.5]

Real Event - OB110251  



Finite Source 
Binary Lens 
Model Solutions

ℓn Z ᷣ2 /dof

With Parallax 
(Wide Separation)

8107.01 ± 0.52 3726.53 / 3729

Without Parallax 
(Wide Orbit)

8103.50  ± 0.47 3740.67 / 3731

With Parallax 
(Close Orbit)

8094.53 ± 0.46 3763.37 / 3729

Without Parallax 
(Close Orbit)

8093.87 ± 0.46 3760.51 / 3731

● Most favourable model 
with highest log-evidence 
value also has the lowest 
ᷣ2 value. The 2 methods 
agree.

● Wide separation model 
with the parallax is favored 
over the model without the 
parallax by a factor of 
e3.51

Real Event - OB110251  



Real Event - OB110251  

Parameter estimates agreed 
with previously published results 
to within 2σ. Some 
discrepancies. 



➢ Gain: Straightforward and Quantitative Model Selection

Challenges:
➢ Higher computation time 

○ With increase in prior range. 
○ For complex real events.

➢ Doesn’t work (so far) for some events with sharp peaks due 
to caustic crossings.

➢ Is using Gridsearch to eliminate lower likelihood regions 
justified in the Bayesian framework? (reviewer’s comments)

Challenges ...
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