Accurate, Empirical Radii and Masses with *Gaia*: Eclipsing Binaries and Transiting Planets

Daniel J. Stevens Know Thy Star Conference October 11, 2017

Image Credit: Walter Benjamin

Know Thy Star, Know Thy Planet

Precise, accurate stellar characterization necessary for:

- Planet hunting
- Atmosphere studies
- Bulk compositions

- M dwarf hosts:
- MEarth measures <5% radius ratios -- accuracy matters
- Discrepancies between models and observations

M Dwarf Models: Too Small, Too Hot

- Underpredict radii by 5-10%
- Overpredict *T*_{eff} by similar amount

Two questions:

- What internal processes are models not capturing?
- What role do binary interactions have?

Characterizing Single-lined EBs

- Includes transiting exoplanet systems
- Hundreds found by transit surveys
 - Many more with TESS!
 - \rightarrow >100s of M dwarfs at interesting periods

Combine parallax, SED, eclipses, RVs for "model-independent" masses and radii

Parameters from Single-lined EBs

- Measure period *P*, depth δ, durations T, τ
 → a/(R₁+R₂), R₂/R₁
 Infer density ρ:
- $\rho \approx \frac{3\pi}{GP^2} \left(\frac{a}{R1}\right)^3 f(eccentricity)$
 - RV semiamplitude K

$$M_2 = G^{-1/2} \frac{KP^{2/3}}{\sin i} M_1^{2/3} f(eccentricity)$$

No individual masses or radii; only combinations

Gaia Parallaxes Give Stellar Radii

• Fit for (or measure) bolometric flux &

 Can be performed in bulk for bright stars*
 GALEX, Tycho-2, UCAC4, 2MASS, WISE: All-sky & data already exist...

> *e.g. Stevens, Stassun, & Gaudi (subm.)

- Highly inflated Saturn around retired A star
- Can test stellar models & empirical relations:

Parameter Spitzer+Ground+Torres Spitzer+Ground+Final Gaia

Stellar Mass (M $_{\odot}$)	1.44 ± 0.07	1.62 ± 0.05
Stellar Radius (R_{\odot})	> 2.69 ± 0.04	3σ 2.790 ± 0.008
Planet Mass (M _{Jup})	0.171 ± 0.013	0.199 ± 0.019
Planet Radius (R _{Jup})	1.35 ± 0.10	1.45 ± 0.08

Ex: KELT F+M Binary

A Preliminary Result

- Assuming <1% parallax:
- R_1 : 1.74 R_{\odot} (1.1%) • R_2 : 0.23 R_{\odot} (2.8%)
- M₁: 1.74 M_☉ (17%)
 (16% density)
- M₂: 0.26 M₀ (10%)

The future is bright...

The Precision of TESS

Example F+M Binary: 1-2% density from eclipse

Flicker: log(g) to 0.1 dex Granulation timescale: g to 4% Secondary eclipses: T_{eff} to 1-2%

Precise SEDs with Gaia & SPHEREx

- Gaia (2020): 330-1050nm spectrophotometry
- SPHEREx* (20<u>20s)</u>: 0.75-5µm • ~All the flux from FGK dwarfs • M dwarf SED peak

*Doré et al. (2016; (arXiv:1606.07039)

Ex: KELT-3 with SPHEREx

Now:

6% F_{bol} Ο 4% R₁ 0 14% M_{*} \bigcirc SPHEREx+ Gaia: <2% F_{bol} <1% R₁ 0 $(<0.1\% T_{eff})$ **TESS**:

2% density
<4% M,

The Next Era of Precision Stellar Astrophysics

- From transit false positives to benchmark systems
 - Test stellar models & other measurement methods
 - Constrain planetary compositions
 - Probe star-planet relationships
- Expect major improvements in precision and accuracy
 - soon: Gaia, TESS, SPHEREx (Brendan Crill's talk tomorrow)
 - later: PLATO, CHEOPS...

T_{eff} & Duration Dominate Errors

Gaia parallaxes contribute negligibly.

T_{eff} contributes significantly:

$$R_{1} \sim T_{eff}^{-2}$$
$$M_{1} \sim R_{1}^{-3}$$
$$\rightarrow M_{1} \sim T_{eff}^{-6}$$

Precise ingress durations: tough from the ground...