SPHEREX: An All-Sky Spectral Survey

Designed to Explore

The Origin of the Universe The Origin and History of Galaxies The Origin of Water in Planetary Systems

The First All-Sky **Near-IR Spectral Survey**

A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation

Single Observing Mode No Moving Parts Large Technical & Scientific Margins

Brendan Crill Jet Propulsion Lab / California Institute of Technolo October 12, 2017

Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

SPHEREx Science Team

Jamie Bock	Caltech/JPL	Principal Invest
Matt Ashby	CfA	Interstellar ices
Peter Capak	IPAC	Galaxy redshifts
Asantha Cooray	UC Irvine	Extragalactic ba
Elisabeth Krause	JPL/U. Arizona	Cosmology
Brendan Crill	JPL	Pipeline archite
Olivier Doré	JPL	Project Scientis
Chris Hirata	Ohio State	Cosmology
Woong-Seob Jeong	KASI	KASI PI
Phil Korngut	Caltech	Instrument Scie
Dae-Hee Lee	KASI	Instrumentation
Phil Mauskopf	Arizona State	Survey planning
Gary Melnick	CfA	Interstellar ices
Roland dePutter	Caltech	Cosmology
Yong-Seon Song	KASI	Cosmology
Harry Teplitz	IPAC/Caltech	Data Archive
Volker Tolls	CfA	Ices pipeline
Steve Unwin	JPL	Interstellar ices
Mike Werner	JPL	Legacy science
Mike Zemcov	RIT	Data pipeline
Lindsey Bleem	Argonne	Galaxy clusters
Roger Smith	Caltech	Detector arrays
Tim Eifler	JPL/U. Arizona	LSST/DESI synei
Salman Habib	Argonne	Cosmology sime
Katrin Heitmann	Argonne	Cosmology sime
Karin Sandstrom	UCSD	Star formation
Carey Lisse	JHU	Solar system
Daniel Masters	Caltech	Spectral redshif
Hien Nguyen	JPL	Instrumentation
Karin Oberg	CfA	Ice properties
Rogier Windhorst	Arizona State	JWST synergies

vestigator ices shifts tic backgrounds chitect entist Scientist tation nning ices e е ices ence ne

sters rrays synergies simulations simulations tion n dshift fitting tation ties

What are the Most Important Questions in Astrophysics?

As Stated in the NASA 2014 Science Plan

How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?

"Discover and study planets around other stars, and explore whether they could harbor life"

SPHEREx Creates an All-Sky Legacy Archive

A spectrum (0.8 to 5 micron) for every 6" pixel on the sky

All-Sky surveys demonstrate high scientific returns with a lasting data legacy used across astronomy For example:

COBE IRAS GALEX WMAP Planck WISE

More than 400,000 total citations

SPHEREx Overview

Passively cooled telescope (80K 30cm diameter primary) and near-infrared detectors (55K) in Low-earth Orbit

Wide-field telescope with High-Throughput Linear Variable Filter (LVF) Spectrometer

A complete spectrum is made from a series of images

SPHEREx maps the sky over multiple orbits with large and small slews

SPHEREx sensitivity after 4 years

SPHEREx Cosmology Goals

Inflation

SPHEREx Large-Volume Redshift Catalog

- Largest effective volume of any survey, near cosmic variance limit
- Excels at z < 1, complements dark energy missions (Euclid, WFIRST) targeting z ~ 2
- SPHEREx + Euclid measures gravitational lensing and calibrates Euclid photo-zs
- Constrains inflation through highly sensitive measurements of statistical non-Gaussianity in large scale structure

Galaxy Formation

Deep field survey: Extragalactic Background Light

- SPHEREx has ideal wavelength coverage and high sensitivity for studying large-scale fluctuations
- Multiple bands enable correlation tests that are sensitive to redshift history
- Method demonstrated on Spitzer & CIBER

SPHEREx Surveys Ices in All Phases of Star Formation

SPHEREx Data Products & Tools

Planned Data Releases					
Survey Data	Date (Launch +)	Associated Products			
Survey 1	1 – 8 mo	S1 spectral images/data cube			
Survey 2	8 – 14 mo	S1/2 spectral images/data cube Early release catalog			
Survey 3	14 – 20 mo	S1/2/3 spectral images/data cube			
Survey 4	20 – 26 mo	1/2/3/4 spectral images/data cube			
Final Release		Legacy catalogs and maps			
Available Data Tools: Served through IRSA at IPAC					
Analysis Tool	Functi	on			
Image lookup Find image at location and time					
SED estimator Find spectrum of a known source					
Data cube viewer View spectrum of any sky region					
On-the-fly mosaic Images within specified time					
Variable sources Spectra over all 4 surveys					
Moving sources SEDs for known moving objects					
Legacy Catalogs and Maps					
Catalog	#	Function			
Core science	>450 M	Galaxy types & redshift			
catalogs	> 20,000	Ice sources			
Deep field maps Image mosaics					
Stars	> 100 M	SEDs of known stars			
Galaxies	1.4 B	SEDs of known galaxies			
Clusters	25,000	SEDs of cluster members			
Asteroids	10,000	SEDs of known objects			
Galaxy maps		Image and line mosaics			

more releases, tools and catalogs under consideration

SPHEREx synergy w/ other NASA missions

SPHEREx planned to launch in 2022

TESS stars + SPHEREx spectrophotometry + GAIA parallaxes = huge improvement in stellar radii

(yesterday's talk by Dan Stevens)

JWST follow-up of unusual objects in SPHEREx archive, for example:

- High redshift quasars
- Objects with interesting ice features
- Etc..

... and complements cosmology with Euclid (2020) and WFIRST (mid 2020's)

What Would You Do with the Archive?

New Ideas from the 2016 Workshop

Object	# Sources	Legacy Science	Reference
X-ray all-sky survey	> 100,000	Detect eROSITA source SEDs and spectroscopic redshifts	Dore et al. 2016
Missing baryons	> 10,000	In conjunction with CMB, detect kSZ signal in galaxy groups and clusters	Dore et al. 2016 Ferraro et al. 2016
Exoplanet characterization	> 1000	With GAIA, determine precise radii for host stars	Dore et al. 2016
Deuterated PAHs		Probe and possible map deuterated PAHs, complete inventory of D in local ISM	Dore et al. 2016 Doney et al. 2015
Lowest metallicity stars	~1000	Identify low-mass stars by their IR signatures, map distribution in Galaxy	Dore et al. 2016
Asteroids and comets	10,000 / 100	Spectrally classify numerous asteroids; CO/CO ₂ ratios in comets	Dore et al. 2016
Nearby galaxies	>100 million	Spectrally image galaxies to trace stellar populations, star formation, etc	2MASS catalogs
New idea here!	TBD		

2018 Workshop Jan 30-31 at CfA

2016 Workshop: Over 50 non-SPHEREx scientists
Charter: Identify new science, tools and data products
2014 SPHEREx science paper: Over 60 citations
Workshop white paper: 84 pages, 68 authors

Exoplanet masses

X-ray synergies

spherex.caltech.edu

- SPHEREx's all-sky spectrophotometric survey in the near-infrared creates a a lasting data legacy that is widely useful across astronomy
- SPHEREx's unique survey aims to address fundamental questions in:
 - The nature of inflation
 - The history of galaxy formation
 - Abundance, composition, and evolution of ices in our galaxy.
- MidEx competition wraps up late in calendar year 2018
- If SPHEREx is selected, launch is planned for late 2022

SPHEREX

Thanks for your Attention!

BACKUP

Demo of flight free-form mirror giving 44 nm rms vs. 80 nm req't

Wide-Field Telescope

The PSF is under sampled. We use ~8000 bright stars per image to determine

- Astrometry to < 1" per image
- PSF FWHM to < 1 % per image

SPHEREx core science uses known source positions

Redshifts with SPHEREx

We extract the spectra of *known* sources using the full-sky catalogs from <u>PanSTARRS/DES</u>. Controls blending and confusion

We compare this spectra to a template library (robust for low redshift sources): For each galaxy: redshift & type Multiple types test galaxy bias effects

The 1.6 µm bump is a well known universal photometric indicator (Simpson & Eisenhardt 99)

We simulated this process using the COSMOS data set using the same process as Euclid/WFIRST (Capak et al.).

The power of low-resolution spectroscopy has been demonstrated with PRIMUS (Cool++14), COSMOS (Ilbert++09), NMBS (van Dokkum++09).

Testing Redshift Reliability

Inject Real Galaxies into SPHEREx Pipeline

Example Template and Redshift Fits

SPHEREx Large Volume Galaxy Survey

SPHEREx Large-Volume Redshift Catalog

- Largest effective volume of any survey, near cosmic limit
- Excels at z < 1, complements dark energy missions (Euclid, WFIRST) targeting z ~ 2
- SPHEREx + Euclid measures gravitational lensing and calibrates Euclid photo-zs

Survey Designed for Two Tests of Non-Gaussianity

- Large scale power from **power spectrum**: large # of low-accuracy redshifts
- Modulation of fine-scale power from **bispectrum**: fewer high-accuracy redshifts

SPHEREx Measures Large-Scale Fluctuations

- SPHEREx has ideal wavelength coverage and high sensitivity
- Multiple bands enable correlation tests sensitive to redshift history
- Method demonstrated on Spitzer & CIBER

- Emission lines encode clustering signal at each redshift over cosmic history
- Amplitude gives line light production
- Multiple lines trace star formation history
 - High S/N in H α for z < 5; OIII and H β for z < 3
 - Ly α probes EoR models for z > 6
 - H α and Ly α crossover region 5 < z $\,$ < 6 $\,$

SPHEREx Galactic Ice Survey

Inject Simulated Ice Sources into Pipeline Ice Source Preparation Select a set of ice species and Select background source types Combine the ice absorption strengths from an from Kucucz stellar catalog Input Synthetic absorption spectra with empirical database and create source brightness, and add Spectra the stellar spectra. simulated absorption spectrum. (adjustable) extinction. Image Simulation Position source on detector Create Generate Combine component zodiacal light with pointing error, integrate photon and maps to generate an 96 Simulated and diffuse bandpass for incident pixel, observed image and read noise

Estimate Errors on Absorption Depth

Reliable Columns of Ice Species

Expect ~1 Million High-Quality Ice Detections

SPHEREx Tests Inflationary Non-Gaussianity

- Projected SPHEREx sensitivity is $\Delta f_{NL} < 0.5$ (1 σ)
 - Two independent tests via power spectrum and bispectrum
- Competitively tests running of the spectral index
- SPHEREx low-redshift catalog is complementary for dark energy

How Did Galaxies Begin?

Contributions to the Extragalactic Background Light

SPHEREx extragalactic background light measurements determine the total light emitted by galaxies

Current Absolute EBL Measurements

Problem with Absolute Photometry: Foregrounds!

Relating Galaxies to Dark Matter

Dark Matter from Numerical Simulation (z = 2)

Dark Matter Clumps Color-Coded by Mass

Large scales: Light traces dark matter Measure light production [since we "know" P(k)] Measure P(k) precisely \rightarrow cosmography Med scales:

Small scales:

Non-linear clustering **Poisson fluctuations**

Galaxy formation within a halo Galaxy counts

Measuring Cosmic Light Production

Two Ways to Measure Cosmic Light Production

Individual Galaxies & Redshifts
 Large telescope for point source sensitivity

 Large-Scale Patterns in the Background
 Small telescope with fidelity on degree scales

→ the amplitude of large-scale (clustering)
fluctuations proportional to total light production

What Constitutes Cosmic Light Production?

1) Photon Production in Galaxies

Nucleosynthesis & black holes, peaks at z ~ 2

- **2)** First Stars and Galaxies Epoch of Reionization z > 6
- 3) Inter Halo Light

Tidally stripped stars at z = 0 - 2

4) Surprises?

Continuum Intensity Mapping How to Fully Exploit Far-Infrared Herschel Maps?

S > 20 mJy : 1,200/deg² S < 20 mJy : 480,000/deg²

Slide courtesy Marco Viero

Large Scale Structure Herschel-SPIRE Lockman Survey Field

Spatial Power Spectrum Shows Clustering

Probing High-z Star Formation

Planck 2013 - ESLAB

Near-Infrared Clustering Fluctuations

IHL (at redshift 0-2) or EOR (at redshift 6-8)?

What Are the Conditions for Life Outside the Solar System?

Sourced by <u>interstellar</u> ices, rich in biogenic molecules: H₂O, CO, CO₂, CH₃OH... Current debate: did earth's water come from the Oort cloud, Kuiper belt or closer? Did water arrive from the late bombardment (~500 MY) or before?

SPHEREx will measure the H_2O , CO, CO_2 , CH_3OH ice content in clouds and disks, determining how ices are inherited from parent clouds vs. processed in disks

Why Study Ices?

Gas and dust in molecular clouds are the reservoirs for new stars and planets

- In molecular clouds, water is 100-1000x more abundant in ice than in gas
- Herschel observations of the TW Hydrae disk imply the presence of 1000s of Earth oceans in ice (Hogerheijde *et al.* 2011)
- Models suggest water and biogenic molecules reside in ice in the disk mid-plane and beyond the snow line
- Ideal λs to study ices: 2.5 5 μm
- Includes spectral features from H_2O , CO and CO_2
- Plus chemically important minor constituents NH₃, CH₃OH, X-CN, and ¹³CO₂

Schematic of a protoplanetary disk

ISO absorption spectrum

Demonstrating the Band 1 LVF Spectrometer

H2RG pixel y

2 % Reflections Between Detector & LVF

SPHEREx Passive Cooling System

Thermal System Prototype Testing

Case		Associated	CBE Heat Load [mW]			Max Heat Load on Stage				
No	Thermal Stage	Radiator	Total	Dissipated	Conducted	Radiated	Total ^b [mW]	Margin ^b [mW]	Margin ^b [%]	To meet
	5.3 µm-FPA	FPA Radiator	33.8	16	13.1	4.7	102.9	69.0	204	T ≤ 55 K
1ª	2.5 µm-FPA	Telescope	121.0	16	37.5	67.5	452.4	331.4	274	T ≤ 80 K
	SIDECAR (4×)	Mid Conical Panel	1250	880	N/A	370	3690	2440	195	T ≤ 200 K

a) Analysis is EOL under worst-case sun and Earth avoidance conditions (Case 1).

b) Power margins give the maximum heat load on each stage that meets the temperature requirement.

Falcon IX vs. Pegasus Launch

Falcon IX:2865 kg to LEO sun-sync1564 % mass margin

Pegasus: 240 kg to LEO sun-sync

Hawaii-2RG Detector Arrays

Teledyne H2RG arrays - H1RGs flown on HST (1.7um), OCO (2.5um), WISE (5um) (TRL 9) - H2RGs and SIDECAR for JWST (TRL 6) - H2RGs wide use in ground-based astronomy

'Off-the-Shelf' Array Specifications

Parameter	2.5 μm Arrays		5 μm Arrays		
	Spec	Typical	Spec	Typical	
CDS Read Noise	18 e ⁻	10.5 e ⁻	15 e ⁻	10.5 e ⁻	
Detector QE	70 %	75 %	75 %	75 %	
Dark Current	0.05 e⁻/s	0.01 e⁻/s	0.05 e⁻/s	0.01 e⁻/s	

