The Frequency of Exoplanetary Systems

Courtney Dressing University of California, Berkeley

Know Thy Star – Know Thy Planet Pasadena, CA October 10, 2017

Collaborators: Andrew Vanderburg, Josh Schlieder, Ian Crossfield, Heather Knutson, Elisabeth Newton, David Ciardi, BJ Fulton, Erica Gonzales, Kevin Hardegree-Ullman, Andrew Howard, Howard Isaacson, John Livingston, Erik Petigura, Evan Sinukoff, Mark Everett, Elliott Horch, Steve Howell, Girish Duvvuri, Arturo Martinez, the K2 California Consortium, the HARPS-N Collaboration, & the TESS Minjas

Data from NASA Exoplanet Archive

Data from NASA Exoplanet Archive

What do we know about the structure & evolution of planetary systems?

See also: Youdin 2011; Mayor+2011; Wright+2012; Dong+Zhu 2013; Dressing & Charbonneau 2013, 2015; Morton & Swift 2013; Gaidos 2013, 2014; Mulders+ 2015; Silburt+2015; Clanton & Gaudi+2016

Lessons Learned about Planetary Systems: Less Massive Planets are More Prevalent

Mayor et al. 2011

Lessons Learned about Planetary Systems: Smaller Planets are More Prevalent

Howard 2013, Science, 340, 572

Lessons Learned about Planetary Systems: Smaller Planets are More Prevalent

Fressin et al. 2013, ApJ, 766, 81

Charbonneau 2013, 2015; Morton & Swift 2013; Gaidos 2013, 2014; 8 See also: Youdin 2011; Mayor+2011; Dong+Zhu 2013; Dressing Silburt+2015; Clanton & Gaudi+2016

Lessons Learned about Planetary Systems: **There is a Gap in the Radius Distribution of Small Planets**

Fulton et al. 2017, accepted to AJ, arXiv:1703.10375

Planet Occurrence Declines at Short Periods

Mulders et al. 2015, ApJ, 798, 112

2-D View of Planet Occurrence for Cool Dwarfs

Dressing & Charbonneau 2015, ApJ, 807, 45

2-D View of Planet Occurrence for FGK Stars Q1-Q16 10 0.060 0.048 Planet Size [Earth radii] 6 courrel typical 0.036 4 uncert. VÐ 0.024 000 00 000 2 0.012 ക്ക 0.000 100 3 30 10

Orbital period [days]

Fulton et al. 2017, accepted to AJ, arXiv:1703.10375

2-D View of Planet Occurrence for FGK Stars

Fulton et al. 2017, accepted to AJ, arXiv:1703.10375

Knowing thy host star

is only the beginning

Only 61% of Confirmed Planet Host Stars Targets have Spectroscopic Temperatures

[CATEGOR Y NAME] [PERCENTA GE]

NEA Stellar Properties Table

1649 Stars

Only 7% of Kepler Targets have Spectroscopic Temperatures

[CATEGOR Y NAME] [PERCENTA GE] ATEGO RY NAME] [PERCEN TAGE] [CATEGOR Y NAME] PERCENTA GE]

[CATEGOR Y NAME] [PERCENTA GE]

> NEA Stellar Properties Table 200,038 Stars

Only 6% of Bright* Dwarfs have Spectroscopic Temperatures

[CATEGOR
Y NAME]
[PERCENTA
B]Image: Categor
Ry
NAME]
NAME]
(PERCENTA
BE]Image: Categor
AME]
NAME]
(PERCENTA
BE]

[CATEGOR Y NAME] [PERCENTA GE]

Sample Cuts: Kp < 15, log (g) > 4, R* < 1.5 Rsun NEA Stellar Properties Table **70,801 Stars**

Why does the disparity matter?

Incorrect stellar parameters Different systematics Inaccurate search completeness Biased Planet Occurrence Rates

A Case Study: Do the latest M dwarfs host more planets?

A Case Study: Do the latest M dwarfs host more planets?

Early M dwarfs host 2.5 planets

Dressing & Charbonneau 2015

A Case Study: Do the latest M dwarfs host more planets?

Early M dwarfs host 2.5 planets One in four early M dwarfs hosts a small, cool planet

Dressing & Charbonneau 2015

Mid-M Dwarfs Might Harbor More <u>Compact Multi-Planet Systems</u>

Muirhead et al. 2015, ApJ, 801, 18

Paper: Anglada-Escude+2016

Paper: Anglada-Escude+2016

Paper: Anglada-Escude+2016

Paper: Anglada-Escude+2016

TRAPPIST-1 hosts 7 planets!

Gillon+2016, 2017

9.2d

12.4d

How Common are Planetary Systems Orbiting Late M Dwarfs?

Demory et al. 2016, ApJL, arXiv:1606.08622

How Common are Planetary Systems Orbiting Late M Dwarfs?

Demory et al. 2016, ApJL, arXiv:1606.08622

How Common are Planetary Systems Orbiting Late M Dwarfs?

Demory et al. 2016, ApJL, arXiv:1606.08622

Studies of Late M Dwarf Planet Occurrence are Limited by Small Stellar Sample Size

Demory et al. 2016, ApJL, arXiv:1606.08622

Studies of Late M Dwarf Planet Occurrence are Limited by Small Stellar Sample Size

Demory et al. 2016, ApJL, arXiv:1606.08622

Only 51% of our initial targets were actually Low-mass Dwarfs

Revised Stellar Radii Are Larger

Martinez, Crossfield, Schlieder, Dressing et al. 2017, ApJ, 837, 72

Most of our Planets & Candidates are Small and Hot

Dressing et al. 2017b, accepted to AJ, arXiv:1703.07416

85% are Smaller than Neptune

Dressing et al. 2017b, accepted to AJ, arXiv:1703.07416

Spectra are Expensive! How can we classify the full K2 M dwarf sample?

- Trained random forest using spectroscopically-classified stars
- Reported probabilities that individual targets are M dwarfs

Girish Duvvuri

Grad student at Colorado Caltech SURF 2016

Girish Estimated K2's Sensitivity to Planetary Systems Orbiting M Dwarfs

Typical K2 M dwarfs host 1.2 small planets with periods < 50 days

Size Range:	Period < 10 Days	Period 10 – 50 Days
Smaller than Earth	0.21	0.07
Earth – Neptune	0.35	0.45
Neptune - Jupiter	0.07	0.07

Observe more stars

Our Future Steps

Correct for biases

Differential Occurrence Rates

Refine sample

characterization

TESS will change the landscape

WHICH REAL STARS WILL TESS OBSERVE?

The TESS Input Catalog and Candidate Target List [ver. 20170628]

Keivan G. Stassun^{1,2,3}, Ryan J. Oelkers^{1,2}, Joshua Pepper^{4,2}, Martin Paegert^{5,2}, Nathan De Lee^{6,2},
Guillermo Torres⁵, David Latham⁵, Philip Muirhead⁷, Courtney Dressing⁸, Barbara Rojas-Ayala⁹,
Andrew Mann¹⁰, Scott Fleming¹¹, Al Levine¹², Roberto Silvotti¹³, Peter Plavchan¹⁴,
and the TESS Target Selection Working Group

arXiv:1706.00495; will be submitted closer to launch

WHICH REAL STARS WILL TESS OBSERVE?

The TESS Input Catalog and Candidate Target List [ver. 20170628]

Keivan G. Stassun^{1,2,3}, Ryan J. Oelkers^{1,2}, Joshua Pepper^{4,2}, Martin Paegert^{5,2}, Nathan De Lee^{6,2},
Guillermo Torres⁵, David Latham⁵, Philip Muirhead⁷, Courtney Dressing⁸, Barbara Rojas-Ayala⁹,
Andrew Mann¹⁰, Scott Fleming¹¹, Al Levine¹², Roberto Silvotti¹³, Peter Plavchan¹⁴,
and the TESS Target Selection Working Group

arXiv:1706.00495; will be submitted closer to launch

WHICH REAL STARS WILL TESS OBSERVE?

A CATALOG OF COOL DWARF TARGETS FOR THE TRANSITING EXOPLANET SURVEY SATELLITE

Philip S. Muirhead,¹ Courtney Dressing,² Andrew W. Mann,^{3, *} Bárbara Rojas-Ayala,⁴ Sebastien Lepine,⁵ Martin Paegert,⁶ Nathan De Lee,^{7,8} and Ryan Oelkers⁸

arXiv:1710.00193, submitted to AAS Journals

The TESS Input Catalog and Candidate Target List [ver. 20170628]

Keivan G. Stassun^{1,2,3}, Ryan J. Oelkers^{1,2}, Joshua Pepper^{4,2}, Martin Paegert^{5,2}, Nathan De Lee^{6,2},
Guillermo Torres⁵, David Latham⁵, Philip Muirhead⁷, Courtney Dressing⁸, Barbara Rojas-Ayala⁹,
Andrew Mann¹⁰, Scott Fleming¹¹, Al Levine¹², Roberto Silvotti¹³, Peter Plavchan¹⁴,
and the TESS Target Selection Working Group

arXiv:1706.00495; will be submitted closer to launch

WHICH REAL STARS WILL TESS OBSERVE?

A CATALOG OF COOL DWARF TARGETS FOR THE TRANSITING EXOPLANET SURVEY SATELLITE

V – J > 2.7, $T_{eff} \le 4000$ K

PHILIP S. MUIRHEAD,¹ COURTNEY DRESSING,² ANDREW W. MANN,^{3,*} BÁRBARA ROJAS-AYALA,⁴ SEBASTIEN LEPINE,⁵ MARTIN PAEGERT,⁶ NATHAN DE LEE,^{7,8} AND RYAN OELKERS⁸

arXiv:1710.00193, submitted to AAS Journals

How did we identify cool dwarfs?

- Started with SUPERBLINK catalog
 - All-sky
 - High proper motions (> 40 mas/yr)
 - Optical & infrared magnitudes
- Updated V band magnitudes
- Separated dwarfs from giants
- Calculated TESS magnitudes
- Estimated stellar properties
 - T_{eff} from color
 - Mass& radius from M_{K} (3% errors) or T_{eff} (13% errors)

Cool Dwarf Catalog: 1,080,005 stars

Only stars with high proper motion (> 150 mas/yr)

How many planets might we find?

How many planets might we find?

Let's look at ALL the cool dwarfs!

How many planets might we find?

2533 planets with Rp = 0.5 – 4 R_{Earth} & P < 200 days

REALITY CHECK: NOT ALL COOL DWARFS WILL BE OBSERVED AT 2-MINUTE CADENCE

Possible Prioritization Schemes

The "Easy" Scheme Maximizes Planet Yield

The "Easy" Scheme Maximizes Planet Yield

The TESS Planet Yield will Dwarf the Kepler & K2 Sample

The TESS Planet Yield will Dwarf the Kepler & K2 Sample

Summary

- Planets are common
- Smaller/less massive planets are more frequent
- Smaller stars have more close-in planets
- Large surveys of diverse stellar populations are required to truly understand planet occurrence

Know all thy stars thou must to know thy planet occurrence rates.

Acknowledgements

Collaborators: Francesco Pepe, Andrew Collier Cameron, Stephane Udry, David Latham, Emilio Molinari, David Charbonneau, Lars Buchhave, Xavier Dumusque, Sara Gettel, Raphelle Haywood, John Asher Johnson, Mercedes Lopez-Morales, David Phillips, Andrew Vanderburg, Laura Affer, Aldo Bonomo, Rosario Consentino, Pedro Figueira, Aldo Fieorenzano, Avet Harutyunyan, Eric Lopez, Christophe Lovis, Luca Malavolta, Michel Mayor, Giusi Micela, Annelies Mortier, Fatemeh Motalebi, Valerio Nascimbeni, Giampaolo, Piotto, Don Pollacco, Didier Queloz, Ken Rice, Dimitar Sasselov, Damien Segransan, Alessandro Sozzetti, Andrew Szentgyorgyi, Chris Watson

K2 California Consortium (K2C2): Kimberly Aller, Christoph Baranec, Chas Beichman, Bjoern Benneke, Jessie Christiansen, David Ciardi, Justin Crepp, Ian Crossfield, Trevor David, BJ Fulton, Kevin Hardegree-Ullman, Brad Hansen, Thomas Henning, Lynne Hillenbrand, Andrew Howard, Howard Isaacson, Heather Knutson, Sebastian Lepine, Michael Liu, John Livingston, Arturo Martinez, Erik Petigura, Evan Sinukoff, Josh Schlieder, Michael Werner

TESS Minjas: Phil Muirhead, Andrew Mann, Barbara Rojas Ayala, Sebastian Lepine

Recent funding provided by the NASA Sagan Fellowship Program Ground-based telescope time from Caltech TAC & IRTF TAC. K2 funding & targets from NASA.

2-D View of Planet Occurrence for FGK Stars

Fulton et al. 2017, accepted to AJ, arXiv:1703.10375

Small Stars Host More Planets

Mulders et al. 2015, ApJ, 798, 112