Microlensing Exoplanet Mass Measurement in WFIRST Era

Aparna Bhattacharya

NASA GSFC, UMCP

Collaborator: David Bennett

J.Anderson, N. Koshimoto,

V.Batista, J.-P. Beaulieu, I.A.Bond, A.Gould, D.Suzuki

Know Thy Star, Know Thy Planet

October 12, 2017

Importance of Mass Measurements from Microlensing

PHOULD TO PERAY

Planetary Microlensing Events with Physical Parameters

OGLE-2003-BLG-235 (Bennett+ 2006) OGLE-2005-BLG-071 (Dong+ 2009, Udalski+ 2006) OGLE-2005-BLG-169 (Bennett+ 2015, Batista+ 2015, Gould+ 2006) OGLE-2006-BLG-109 (Gaudi+ 2010) OGLE-2007-BLG-368 (Sumi+ 2010) MOA-2007-BLG-192 (Kubas+ 2010, Bennett+ 2008) MOA-2007-BLG-400 (Dong+ 2009a) OGLE-2007-BLG-349 (Bennett+ 2016) MOA-2008-BLG-310 (Bhattacharya+ 2017, Janczak+ 2010) MOA-2009-BLG-319 (Miyake+ 2011) MOA-2011-BLG-293 (Batista+ 2014, Yee+ 2012) OGLE-2012-BLG-006 (Poleski+ 2017) OGLE-2012-BLG-0950 (Koshimoto+ 2016) OGLE-2012-BLG-563 (Fukui+ 2015) OGLE-2012-BLG-0026 (Beaulieu+ 2016) MOA-2013-BLG-220 (Yee+ 2014) OGLE-2013-BLG-605 (Sumi+ 2016) MOA-2016-BLG-227 (Koshimoto+ 2017b) OGLE-2016-BLG-1195 (Yossi+ 2017, Bond+ 2017)

- A typical case of microlensing light curve modelling provides with planet-host star mass ratio q and planet – star separation s in Einstein radius. But does NOT provide planet, host star masses and distances in physical values
- If lucky , parallax measurements from ground and SPITZER can provide us mass and distance measurements
- We need high resolution images to get mass measurements

Mass Measurements with Follow-Up High Resolution Images

- Mass Measurement using isochrones C.Henderson Talk
- Mass measurement with lens detection using PSF fitting

We need from light curve fitting:

- \circ Angular Einstein radius ($\theta_{\rm E}$)
- Planet-host star mass ratio (q)
- \circ Planet- star separation in Einstein radius units (s)
- \odot Lens-source relative proper motion (µ $_{rel})$

Finite Source Effects & Lens Brightness Measurement Yield Lens System Mass Measurement Yield Lens System Mass Source Earth Instein radius $\theta_E = \theta_* t_E / t_*$ $\theta_* =$ source star angular radius D_1 and D_5 are the lens and source distances

 Lens brightness & color(AO,HST) used in Mass- Luminosity relation mass-distance relation→D_L , M_L

<u>Aparna Bhattacharya</u>

HST Observations & PSF Fitting

Follow –Up Observations of OGLE-2005-BLG-169 taken 6.5 years after the peak

First Direct Relative (Lens-Source) Proper motion of

Planetary Microlens Host Star Measured

Bennett, Bhattacharya, Anderson+ 2015

HST Observations & PSF Fitting

<u>First Direct Relative (Lens-Source) Proper motion of</u> <u>Planetary Microlens Host Star Measured</u>

HST $\mu_{rel_{l}} = 7.39 \pm .20 \text{ mas/yr}$ $\mu_{rel_{l}} = 7.28 \pm .12 \text{ mas/yr}$ $\mu_{rel_{b}} = 1.33 \pm .23 \text{ mas/yr}$ $\mu_{rel_{b}} = 1.54 \pm .12 \text{ mas/yr}$ Both supports $\alpha \sim 90^{\circ}$ and $q = 6 \times 10^{-5}$ model

- ➢Host mass: 0.687 ± .021
 M_☉
- Planet Mass:

14.1 ± 0.9 M_{\oplus}

- $> D_{L} = 4.1 \pm 0.4 \text{ kpc}$

3.5 ± 0.3 AU

➤Host mass: 0.667 ± .049M_☉

Planet Mass:

 $13\pm1.5~{
m M}_\oplus$

$$D_{L} = 3.9 \pm 0.4 \text{ kpc}$$

➢ Projected Separation($a_⊥$):

3.4 ± 0.3 AU

Ideal condition of Follow up Observations for Mass Measurement

GAIA cannot do this because: PSF fitting We absolutely need **high resolution follow up** for the current ground based planetary microlensing

In future with WFIRST Space Based Microlensing Survey we will be able to measure mass directly from the survey with lens detection

Planetary Microlensing Events with Excess Flux Detection in High Resolution Images

MOA-2008-BLG-310 (Janczak+ 2010, Bhattacharya+ 2017) MOA-2011-BLG-293 (Batista+ 2014, Yee+ 2012) OGLE-2012-BLG-0950(Koshimoto+ 2016) OGLE-2012-BLG-563 (Fukui+ 2015) OGLE-2007-BLG-368 (Sumi+ 2010) MOA-2007-BLG-192 (Kubas+ 2010, Bennett+ 2008) OGLE-2005-BLG-169 (Bennett+ 2015, Batista+ 2015, Gould+ 2006) OGLE-2007-BLG-349 (Bennett+ 2016) OGLE-2012-BLG-0026 (Beaulieu+ 2016) OGLE-2006-BLG-109 (Gaudi+ 2010) OGLE-2003-BLG-235 (Bennett+ 2006) OGLE-2005-BLG-071 (Dong+ 2009, Udalski+ 2006)

• From Discovery paper¹:

q = $(3.3\pm0.3) \times 10^{-4}$

Sub Saturn mass planet

 μ_{relG} = 5.1 ± 0.3 mas/yr

- Excess flux in H band (NACO Data)
- Extra Flux detected on top of source in HST / and V band data in both epochs 3.6 and 5.6 years later

MOA-2008-BLG-310Two star fit – Source Flux ConstrainedSourceBlend Star

2012 HST F814W

2014 HST F555W

Source Flux constrained from light curve fitting

Bhattacharya+ 2017

<u>Two star fit – Source Flux and Lens- Source Separation Constrained</u>

Dual Star Fit	Year	Filter	Magn	itude [*]	Separation	Separation star 2 - star 1		χ^2
			Star 1	Star 2	(mas)	$\Delta \mathbf{x}$	Δy	
Best Fit	2012	Ι	19.84(0.15)	20.31(0.24)	14.1(3.2)	9.5(2.6)	10.1(2.6)	194.3
		V	21.37(0.18)	21.74(0.56)	15.2(2.9)	6.7(2.5)	13.1(2.1)	193.1
	2014	Ι	19.86(0.14)	20.28(0.18)	12.2(3.3)	10.6(1.8)	4.7(2.8)	201.1
		V	21.47(0.22)	21.64(0.27)	11.6(3.7)	10.3(2.2)	6.2(3.1)	195.9
Source Flux Constrained	2012	Ι	19.47(0.05)	21.35(0.29)	16.6(2.1)	11.2(1.2)	12.4(1.6)	204.2
		V	21.11(0.12)	22.26(0.38)	16.1(2.9)	9.2(2.1)	11.6(2.1)	199.2
	2014	I	19.45(0.05)	21.43(0.31)	14.1(2.1)	12.4(1.2)	6.1(1.2)	210.9
		V	21.11(0.11)	22.31(0.43)	13.5(2.4)	11.6(1.2)	7.6(2.1)	200.9
Courses Elver		7	10.46(0.04)	01 41/0 01)	17 4/2 4)	11 4/9 E)	10.7(0.2)	014 5
Source Flux	2012	1	19.46(0.04)	21.41(0.21)	17.4(3.4)	11.4(2.5)	12.7(2.3)	214.5
and		V	21.09(0.13)	22.28(0.28)	17.3(3.6)	6.5(2.8)	13.6(2.2)	206.2
Separation	2014	Ι	19.38(0.06)	22.18(0.27)	26.9(7.7)	20.3(7.1)	14.5(3.1)	233.9
Constrained		V	21.02(0.09)	22.66(0.48)	26.8(9.3)	23.8(8.3)	12.5(4.2)	218.7
	This	Table p	resents magni	itudes calibrat	ed to the OG	LE-III scale		

Aparna Bhattacharya

Two star fit – Conclusions

- The Extra flux on top of the source is primarily <u>NOT</u> due to the lens
- Source Companion The velocity of the blend star is too
 - high to be source companion
- Lens Companion Velocity measurement is not similar to lens– not a lens companion
- Ambient Star Possibly , the proper motion is consistent with bulge stars

<u>Two star fit – Conclusion</u>

The Excess Flux is not necessarily due to the lens primarily.

It is important to verify the lens with the lens-source relative proper motion.

<u>Three star fit – Upper Limit on Lens Mass</u>

<u>Three star fit – Upper Limit on Lens Mass</u>

	1									
parameter	units	99% с І	onfidence V	95% с І	$ \begin{array}{c} \text{onfidence} \\ V \end{array} $					
Host star mass, M_*	M_{\odot}	0.64	0.73	0.61	0.72					
Planet mass, $m_{\rm P}$	M_{\oplus}	72	82	69	81					
Host star - Planet 2D separation, a_{\perp}	AU	1.1	1.1	1.1	1.1					
Lens distance, $D_{\rm L}$	kpc	7.8	7.8	7.8	7.8					
I = 22.15, V = 23.41 (99% confidence)										
I = 22.44, V = 23.62 (95% confidence)										

Conclusions

- Space based microlensing survey like WFIRST will be able to not only detect the microlensing exoplanets but will also measure the mass of the exoplanets directly from the survey.
- Extra Flux detection on top of the source is not necessarily the lens. We have to be careful to verify the lens with relative proper motion in high resolution images.
- We can still get an upper limit on the mass measurements.

Thank You