SpecMatch-Emp: **Stellar Characterization using an Empirical Spectral Library**

https://github.com/samuelyeewl/specmatch-emp

Introduction

Classifying stars by comparing their optical spectra has long been a workhorse of observational astronomy. Stellar spectra contain rich information about a star's effective temperature, radius, and metallicity.

SpecMatch-Empirical is a new freely available tool to rapidly extract these fundamental stellar properties by comparing a target spectrum to a spectral library of touchstone stars with well-determined properties.

Samuel Yee¹, Erik Petigura¹, Kaspar von Braun²

Algorithm

Performance

Internal Cross-Validation Analysis

1. California Institute of Technology, Pasadena, CA 2. Lowell Observatory, Flagstaff, AZ

	$\sigma(T_{eff})$	σ(R)	σ[Fe/H] (dex)
All Stars	Typical Library Uncertainties		
	75 K	8%	0.07
	Derived Properties Scatter		
	100 K	15%	0.09
Cool Stars	Typical Library Uncertainties		
(T < 4500 K)	60 K	4%	0.08
	Derived Properties Scatter		
	70 K	10%	0.12

Algorithm is robust down to SNR ~ 10 and resolution R ~ 30,000