Properties of Exoplanet Host Stars

Erik Petigura, Hubble Fellow, Caltech Know Thy Star October 9, 2017

Properties of Exoplanet Hosts

- Stellar properties influence planet detectability
- Precision measurements of stellar radii
- A frontier: data-driven spectroscopy

Stellar Properties Influence Planet Detectability

Source: NASA Exoplanet Archive

RV technique...

...performs best when host stars are...

- Bright (typically optical)
- Slowly rotating (vsini < 10 m/s)
- Inactive

...thus favors detection of planets around

- (single) GK stars
- Main sequence stars (age > 100 Myr)
- Evolved stars (bright, low vsini)

...and struggles to find planets around

- F stars and earlier (vsini too high)
- Young stars (too active)

The future

- PRV in the NIR: M-stars, young stars.

David Gray

RV technique...

...performs best when host stars are...

- Bright (typically optical)
- Slowly rotating (vsini < 10 m/s)
- Inactive

...thus favors detection of planets around

- (single) GK stars
- Main sequence stars (age > 100 Myr)
- Evolved stars (bright, low vsini)

...and struggles to find planets around

- F stars and earlier (vsini too high)
- Young stars (too active)

The future

- PRV in the NIR: M-stars, young stars.

Transit technique...

...performs best when host stars are...

- Bright (typically optical)
- Small (favorable radius ratio)
- Inactive

...thus favors detection of planets around

- GK stars
- M stars (if restricted to bright)
- Rapidly rotating stars are fine.

...and struggles to find planets around

- Evolved stars (unfavorable radius ratio)
- Young stars (high photometric variability)

The future

- K2 and TESS, more M-stars, young stars

Direct imaging technique

performs best when host stars are...

- Nearby (inner working angle)
- Young (favorable contrasts)

...thus favors detection of planets around

- Young A stars

...and struggles to find planets around

- Main sequence and evolved stars

The future

- WFIRST image planets around mainsequence dwarfs (reflected light)

Microlensing technique

performs best when host stars are...

- In front of dense star fields (e.g. Galactic bulge)

...thus favors detection of planets around

- Early-M stars (~0.5 M_{sun}-common)

...and struggles to find planets around

- Nearby stars (low event rate)

Astrometry technique

performs best when host stars are...

- Nearby
- Bright (in Gaia bandpass)

...thus favors detection of planets around

- Nearby FGK stars
- Rapid rotators are fine
- Young stars are fine

...and struggles to find planets around

- Distant stars
- Faint stars (M-dwarfs)

Precision Stellar Radii

Interferometry

α Leo Image Reconstruction

Method

- Directly measure stellar angular size
- sub-mas resolution with CHARA
- Combine with parallax to derive R_*

Strengths

- *R** as good as ~1%
- (almost) model-independent
- Establish "touchstone" stars

Weaknesses

- Requires very bright stars
 - Very nearby dwarfs
 - Only a few KM
 - A few distant giants
- Not feasible for majority of exoplanet hosts

Asteroseismology

Method

- Measure stellar acoustic modes from high precision (space-based) photometry
- Apply simple scaling relations tied to Sun

Strengths

- R* as good as a few %
- Weakly dependent on models and prior assumptions
- Extinction-independent

Weaknesses

- Typically detectable only in ~Sun-like and earlier or in evolved stars
- Roughly ~100 out of ~4000 Kepler planet hosts have AS radii

SED-fitting+Parallax

SED fitting from Mann+15, which established ~200 touchstone M stars.

Method

- Exploit Stefan-Boltzmann equation

$R\star \propto d F_{\rm bol}^{0.5} / T_{\rm eff}^2$

Parallax Spec Phot.+SED model

Strengths

- *R** as good as a few %
- Applicable across HR diagram
- Weak dependence on models
- Gaia will soon provide 1% distances to typical Kepler stars

Weaknesses

- Photometric precision requirements of 0.01 mag pushes the limits of fluxcalibrated photometry
 - Zero point offsets
 - Errors in filter profiles
- Extinction must be corrected at the 0.01 mag level.

Spectroscopy+lsochrones

Fit of Mg b triplet from Brewer+15, which achieve logg accuracies of 0.05 dex

Method

- Derive T_{eff} , logg, [Fe/H] from spectra
- Consult isochrone to derive M_* , R_* , and age
- Isochrones derived from stellar structure/ evolution models

Strengths

- Works over a fraction of HR diagram (F and later)
- Not sensitive to extinction
- No additional observations needed
- R_* as good as ~10%
- High precision (repeatable)

Spectroscopy+lsochrones

Boyajian+12 comparison of measured Teff and Rstar. Some models differ by ${\sim}50\%$

Weaknesses

- Strong model-dependance
 - Model atmospheres
 - Isochrones
- Struggles for cool stars
 - Largest model uncertainties
 - Challenging to fit complex spectra.
- Dominated by systematics
- Beware combining results that
 - use different spectral resolution
 - use different regions of spectrum
 - use different spectral codes
 - use different isochrones

Major challenges for CKS project

- Uniform resolution
- Uniform SNR
- Uniform analysis
- Characterize model dependent offsets

Spectroscopic Methods

Yee, Petigura, & von Braun 2016

Spectroscopy+lsochrones

Boyajian+12 comparison of measured Teff and Rstar. Some models differ by ${\sim}50\%$

Weaknesses

- Strong model-dependance
 - Model atmospheres
 - Isochrones
- Struggles for cool stars
 - Largest model uncertainties
 - Challenging to fit complex spectra.
- Hard-to-characterize systematic errors
 - Photon-limited errors are small
 - MCMC of limited use
- Beware combining results that use different
 - spectral resolution
 - regions of spectrum
 - spectral codes
 - isochrones

Major challenges for CKS project

- Uniform resolution
- Uniform SNR
- Uniform analysis
- Characterize model-dependent offsets

California-Kepler Survey Keck/HIRES Spectra of 1305 KOIs

Petigura, Howard, Marcy, et al. 2017 CKS I: Spectroscopic Properties of 1305 Planet-Host Stars From Kepler

Johnson, Petigura, Fulton, et al. 2017 CKS II: Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

Fulton, Petigura, Howard, et al. 2017 CKS III: A Gap in the Radius Distribution of Small Planets

CKS Precision: Effective Temp.

Spectroscopic

- *T_{eff}* ~ 60 K (vs ~200 K phot.)
- -log*g* ~ 0.10 dex
- -[Fe/H] ~ 0.04 dex
- -vsini ~ 1 km/s

Derived

- *R*★ ~ 10% (vs ~40% phot.)
- *M*★ ~ 5%
- ages ~ 30%
- -distances $\sim 10\%$

CKS Precision: Stellar Radii

Spectroscopic

- *T_{eff} ~* 60 K (vs ~200 K phot.)
- -log*g* ~ 0.10 dex
- $-[Fe/H] \sim 0.04 \text{ dex}$
- -vsini ~ 1 km/s

Derived

- *R*★ ~ 10% (vs ~40% phot.)
- *M*★ ~ 5%
- ages ~ 30%
- -distances $\sim 10\%$

26

Gap in Planet Radii

Data-Driven Spectroscopy

• The challenge

- Planet surveys will target increasing numbers of stars
- Spectroscopic datasets growing
 - LAMOST ~107
 - Gaia ~10⁸
- "Bespoke" spectroscopy not scalable
- Systematic uncertainties in model atmospheres and stellar structure (esp. for cool stars)

- The opportunity
 - Growing samples of "touchstone" stars
 - Use spectra of touchstone stars to constrain unknown stars (no physics!)
 - Advances in computation and machine-learning make datadriven spectroscopy tractable

SpecMatch-Empical: Precision Spectroscopy with Empirical Spectra

See poster by Samuel Yee Caltech Undergraduate

Data-Driven Spectroscopy (c. 2017)

Target Spectrum

04

 $T_{\rm eff} = 3|3|K$ $R \neq = 0.20 R_{\odot}$ [Fe/H] = 0.1 dex

Library - Parameters

Library – Interferometric Sample

Yee, Petigura, a von braun zo ro

Library – Asteroseismology Sample

Yee, Petigura, a von braun zo ro

Library – Spectroscopic Sample

Yee, Petigura, a von braun zoro

Library – M Dwarfs

Yee, Petigura, a von braun zoro

Library – K Dwarfs

Yee, Petigura, a von braun zoro

SpecMatch-Emp Library ~400 HIRES spectra of touchstone stars

Fit target with linear combinations of library spectra

Yee, Petigura, & von Braun 2016

Assess accuracy with cross-validation

	GJ699	All Cool Stars	Libray Uncert.
ΔT_{eff}	80 K	70 K	60 K
∆R/R	15%	10%	4%
∆[Fe/H] (dex)	0.03	0.12	0.08

Data-Driven Spectroscopy

SpecMatch-Empircial

Yee+16

Precision spectroscopy with empirical library

Spectral library and code freely available on GitHub

•The Cannon

Ness+15, Casey+16, Ho+16,

 T_{eff} , logg, [Fe/H] (ver. 1) and 14 other elements (ver. 2) Used to characterize 230,000 LAMOST spectra (Ho+16)

•The Payne

Ting+17

 T_{eff} , log*g*, [Fe/H], and other 13 other elements Priors based on model spectra

See poster by Samuel Yee Caltech Undergraduate

Properties of Exoplanet Hosts

- Stellar properties influence planet detectability
- Precision measurements of stellar radii
- A frontier: data-driven spectroscopy