

Observational Needs for Transit Surveys

Joshua Pepper Lehigh University

Why Are Observations Needed?

Planet Detection

Show me there might be a planet there

<u>Planet Confirmation</u> Prove that the thing causing the event is a planet

System Characterization Tell me everything about the planet and its host star

Why Are Observations Needed?

Planet Detection

Show me there might be a planet there

<u>Planet Confirmation</u> Prove that the thing causing the event is a planet

System Characterization Tell me everything about the planet and its host star

Robotic small telescope surveys

Wide fields, small apertures, hundreds of discoveries

- OGLE
- XO
- TrES

HATNet /

HATSouth

Transit Discovery

Targeted transit surveys

TRAPPIST

- Narrow fields, medium apertures
- Monitor hundreds to thousands of stars
 - Target high-priority stars, most M dwarfs
 - Handful of high-impact discoveries

Cluster / Field surveys

- SWEEPS
- STEPSS
- EXPLORE-OC
- PISCES

Transit Discovery

Kepler

Space-based transit surveys

• 1,000s to 100,000s of candidates

TESS

CoRoT

Why Are Observations Needed?

Planet Detection

Show me there might be a planet there

Planet Confirmation Prove that the thing causing the event is a planet

<u>System</u> <u>Characterization</u> *Tell me everything about the planet and its host star*

Transit Confirmation

- Real astrophysical transit/eclipse vs. false alarm
 - Photometric confirmation with original or new telescope
 - Required if pushing SNR limits
 - Verify ephemeris

 Target is an EB with a large MS primary and a small MS secondary, or a giant star with a MS secondary

 Target is a grazing eclipsing binary

 Target is an EB blended with a line-of-sight or hierarchically bound star

• Target is a single star blended with an EB either line-of-sight or hierarchically

Planet Confirmation – False Positives The Pioneers

• Transit / eclipse of the expected star

- Verify signal is not coming from a nearby (or distant) EB

THE ASTROPHYSICAL JOUI © 2003. The American Astronomi	THE ASTROPHYSICAL JOUR © 2006. The American Astron	THE ASTROPHYSICAL JOURNAL, 614:979–989, 2004 October 20 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.
EXPEC High Altitude	REJECTING Francis T.	TESTING BLEND SCENARIOS FOR EXTRASOLAR TRANSITING PLANET CANDIDATES. I. OGLE-TR-33: A FALSE POSITIVE Guillermo Torres, ¹ Maciej Konacki, ² Dimitar D. Sasselov, ¹ and Saurabh Jha ³ <i>Received 2004 April 23; accepted 2004 June 25</i>
Ground-b many of ste planets. The and of Jovi unaffected t whose light the period d <i>Subject head</i> Efforts to detect tra about Sun-like stars b (Mayor & Queloz that there are now s (Horne 2002). Howe	Ground- trophysica careful ana from a brig transit-like from publi spectral cla velocity. T tometry di successfull system sup light from difficulty in rejecting th <i>Subject he</i>	ABSTRACT We report high-resolution spectroscopic follow-up observations of the faint transiting planet candidate OGLE- TR-33 ($V = 14.7$), located in the direction of the Galactic center. Small changes in the radial velocity of the star were detected that initially suggested the presence of a large planet or brown dwarf in orbit. However, further analysis revealed spectral line asymmetries that change in phase with the 1.95 day period, casting doubt on those measurements. These asymmetries make it more likely that the transit-like events in the light curve are the result of contamination from the light of an eclipsing binary along the same line of sight (referred to as a "blend"). We performed detailed simulations in which we generated synthetic light curves resulting from such blend scenarios and fitted them to the measured light curve. Guided by these fits and the inferred properties of the stars, we uncovered a second set of lines in our spectra that correspond to the primary of the eclipsing binary and explain the asymmetries. Using all the constraints from spectroscopy, we were then able to construct a model that satisfies all the observations and to characterize the three stars based on model isochrones. OGLE-TR-33 is fully consistent with being a hierarchical triple system composed of a slightly evolved F6 star (the brighter object) near the end of its main-sequence phase and an eclipsing binary with a K7–M0 star orbiting an F4 star. The application to OGLE- TR-33 of the formalism developed to fit light curves of transit candidates illustrates the power of such simulations for predicting additional properties of the blend and for guiding further observations that may serve to confirm that scenario, thereby ruling out a planet. Tests such as this can be very important for validating faint candidates. <i>Subject headings:</i> binaries: eclipsing — line: profiles — planetary systems — stars: evolution — stars: individual (OGLE-TR-33)

Brown, T. 2003, ApJ, 593, 125 O'Donovan, F. T., et al. 2006, ApJ, 644, 1237

Torres, G., et al. 2006, ApJ, 644, 1237

Planet Confirmation -Observations

-0.04-0.03

-0.02

-0.010.00

0.01

0.02

0.03

Transit / eclipse of the expected star

 Verify signal is not coming from a nearby (or distant) EB

0.54 0.56

Transit / eclipse of the expected star

- Verify signal is not coming from a nearby (or distant) EB
- Warnings and Caveats from RV Surveys

"MARVELS-1: A Face-on Double-lined Binary Star Masquerading as a Resonant Planetary System and Consideration of Rare False Positives in Radial Velocity Planet Searches"

Wright, et al. 2013, ApJ, 770, 119

AstroWright Blog: MARVELS-1: A Case Study in Healthy Paranoia in Science "A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself to be a Very Long Period, Highly Eccentric Spectroscopic Stellar Binary"

- Mack, C. E., 2013, AJ, 145, 139

"Don't underestimate the ability of Nature to screw with you!" - David Ciardi

• Verifying that the transiting / eclipsing body is planetary mass ($M_p < 13 \text{ M}_J$)

<u>RV measurement of</u> <u>planetary orbit</u>

• *M* sin(*i*), and then *M*

Kuhn, et al., MNRAS, 459, 4281

• Verifying that the transiting / eclipsing body is planetary mass ($M_p < 13 \text{ M}_J$)

• Verifying that the transiting / eclipsing body is planetary mass $(M_p < 13 \text{ M}_J)$

<u>RV measurement of</u> <u>planetary orbit</u>

M_p sin(*i*), and then *M_p*

Transit Time Variations • (TTVs) $\longrightarrow M_p$

Doppler Tomography + RV orbit

- Minimum M_p from orbit
- Projected spin-orbit alignment

Zhou, et al., 2016, AJ, 152, 136

Typical Set of Observations:

Photometric Confirmation of Transit

> Spectroscopic Analysis of Host Star

The order and choice of observations depends on the nature of the survey and availability of follow-up resources.

- Reconnaissance
- Precision / Orbit

RV, TTV, or DT Planet Confirmation

Why Are Observations Needed?

Planet Detection

Show me there might be a planet there

<u>Planet Confirmation</u> Prove that the thing causing the event is a planet

System Characterization Tell me everything about the planet and its host star

System Characterization

<u>Star</u>

- Mass
- Radius
- T_{eff}
- Age
- Luminosity
- Distance
- Metallicity
- Rotational velocity
- Rotational inclination
- Radial Velocity / 3-D motion

<u>Planet</u>

- Mass
- Radius
- Orbital period
- Semimajor axis
- Eccentricity
- Orbital inclination
- TTVs / other planets in the system
- Equilibrium
 Temperature

System Characterization

Know thy neighborhood, or On the Varieties of Binarity Experience

 Neighbor not in the aperture, but with flux bleeding in

PC

- Neighbor in the aperture, but distinguishable by PSF modeling in the survey
- Neighbor fully blended in the survey, but distinguishable in seeing-limited images
- Neighbor fully blended in survey and seeinglimited images, but resolvable by AO
- Neighbor fully blended in all imagery, but detectable as an SB2 of the target
- Neighbor fully blended in all imagery, but detectable if the target is an SB1

You need to know all stars within 1000 arcsec to 1 µas of your target!

Transit Confirmation: FalsePositives CharacterizatioFibbinng

a giant
 Target is the formed of the start
 blended with a line-of-sight or hierarchically bound star

System Characterization

Observables

- Time-series photometry
- Single-epoch spectrum
- Multiple spectra across orbit
- Single-epoch photometry
- Parallax

Doppler Tomography Asteroseismology Stellar Population Analysis

- <u>Star</u>
- Mass
- Radius
 - $\mathsf{T}_{\mathsf{eff}}$
- Age
- Luminosity
- Distance
- Metallicity
- Rotational velocity
- Rotational inclination
- Radial Velocity / 3-D motion

<u>Planet</u>

- Mass
- Radius
- Orbital period
- Semimajor axis
- Eccentricity
- Orbital inclination
- TTVs / other planets in the system
- Equilibrium Temperature

Related Considerations

- Expense in time and money
- Prioritizing candidates for confirmation
 - Is it being done based on scientific value or ease?
- Rapidity of confirmation
 - Loss of ephemeris (especially for TESS)
 - Make available for particular facilities (HST, Spitzer, Swift, JWST), especially in eras of potentially declining budgets (KPNO, UKIRT)

Watch for SAG #17 Report – January 2018 AAS David Ciardi, Joshua Pepper, Knicole Colon, Stephen Kane

PC **Related Considerations**

What have we (mostly) not observed with transits?

High cadence, high-precision, decent baseline to the point of demographic analysis

- Fast rotators
- Young stars •
- Stars with IR excess and disks
 Late M dwarfs
- Subgiants
- **Red giant stars**
- Supergiants
- Hot (OBA) stars
- White dwarfs
- **Neutron stars** •

- Flare stars
- - LTY dwarfs
 - Globular cluster members
 - Halo stars
 - Extragalactic stars
 - Binary secondaries
 - Medium binaries (not tight, not wide)

Final thoughts, questions

- Terminological agreement
 - confirmation/characterization, reconnaissance/precision
- Do we need to confirm all candidates?
 - Either yes, or we need a representative observational survey of the candidate hosts ~600,000 candidates from TESS FFIs
- What is the responsibility of discovery groups to the theorists and those who calculate demographics?
 - Is information being irretrievably lost?
 - If so, is that so bad?
- Confirmation and characterization for large surveys is not being conducted exclusively by single teams. How much coordination is needed? Thank You!