Relating Exoplanet Properties and Host Star Compositions using High Resolution NIR Spectroscopy

Johanna Teske

in collaboration with

Robert Wilson, Steven Majewski, Katia Cunha, Verne Smith, Diogo Souto, Chad Bender, Suvrath Mahadevan, Nicholas Troup, Carlos Allende Prieto, Keivan Stassun

> Cayman Unterborn, Wendy Panero, Scott Hull, Jennifer Johnson

Small Planets Are Diverse*

Two Distinct Orbital Period Regimes Inferred from Host Star [Fe/H] measured with APOGEE-2

Planet Orbital Period

Wilson, Teske et al., submitted

[Fe/H]_{star} vs. Period_{planet} [Fe/H] dust dust [Fe/H] X gas gas [Fe/H] [Fe/H] [Fe/H] [Fe/H] X **Teske #knowthystar**

Looking Ahead to TESS

Looking Ahead to TESS

7<Hmag<11. Awarded 6 nights

= 25-30 plates x 200 stars/plate.

ESSAPOGEE-2S &
Beyond!Join us!AS4 -> AS4All-Sky Synoptic Spectroscopic Survey

PI Juna Kollmeier 1st ever all sky, multi-epoch survey w/ both NIR and optical spectroscopy.

Initial survey plan, credit Gail Zasowski

A cautionary note about stellar spectroscopy... it's a bit of a (dark) art.

- Keith Hawkins

Test	Expected σ dex	Max σ dex	Min σ dex	comment
1. Line list	0.05	0.6	0.0	EW are not affected by position of core of line but number of HFS components might be important
2. Continuum	0.3	0.6	0.05	absolute abundance is very dependent but methods should not re-normalise
3. HFS	0.08	0.4	0.0	differences in abundances between HFS:N and HFS:Y are similar for all methods
4. <i>v</i> _{mie}	0.2	1.2	0.01	maximum difference corresponds to 1 km/s range in v _{mie} , dependency decreases when HFS is considered
5. α -enhancement	0.02	0.1	0.001	cool stars are more affected than metal-poor warm stars
6. Atmosphere model interpolation	0.01	0.04	0.002	obtained from models with 1% difference in temperature and 5-10% difference in gas pressure.
7. Blends	0.02	0.1	0.0	maximum difference is found for EW methods for cool dwarf star
8.1. Same EWs8.2. Same syntheses	0.02 0.07	0.06 0.12	0.001 0.001	weak lines are more affected convolution is more important than the choice of mask

e.g., Jofré et al. 2017

Take Aways

Host star abundances[†] can help constrain when/where/from what material planets formed. [†]If in doubt, find a Parseltongue stellar spectroscopist.

NIR spectroscopy from APOGEE-2 +ASPCAP = reliable FGK dwarf star [Fe/H] at ~0.05 dex level!

We find a correlation between planet *P* and $[Fe/H]_{star}$ characterized by P_{crit} =8.5 days, with **shorter period planets orbiting more metal rich stars.** Maybe this is related to Fulton radius gap (shorter period = smaller)?

AS4+TESS* have the potential to significantly expand our knowledge of (small) planet formation and composition.

*Ask me about the caveat.