Magnetic Inflation and Stellar Mass of M dwarf stars

Eunkyu Han Boston University

Collaborators: Philip S. Muirhead, Jonathan J. Swift, Christoph Baranec, Nicholas M. Law, Reed Riddle, Dani Atkinson, Gregory N. Mace, Daniel DeFelippis

Empirical measurements of EBs have large scatter

Empirical measurements of EBs have large scatter

Empirical measurements of EBs have large scatter

Strong magnetic fields can lead to an increase in the radius of a low-mass star

1. Through the inhibition of the convective heat transfer

 $\nabla > \nabla_{ad}$

where $\nabla = \frac{\partial \log T}{\partial \log P}$

Gough & Tayler 1965

Strong magnetic fields can lead to an increase in the radius of a low-mass star

1. Through the inhibition of the convective heat transfer

$$\nabla > \nabla_{ad} + \delta \qquad \text{where} \quad \nabla = \frac{\partial \log T}{\partial \log P}$$
$$\delta = \frac{B_v^2}{B_v^2 + 4\pi \gamma P_{gas}} \qquad \text{Gough & Tayler 1965}$$

Strong magnetic fields can lead to an increase in the radius of a low-mass star

1. Through the inhibition of the convective heat transfer

$$\nabla > \nabla_{ad} + \delta \qquad \text{where} \quad \nabla = \frac{\partial \log T}{\partial \log P}$$
$$\delta = \frac{B_v^2}{B_v^2 + 4\pi \gamma P_{gas}} \qquad \text{Gough & Tayler 1965}$$

2. Through the the generation of dark spots on the stellar surface

$$L = 4\pi R^{2}\sigma[(1-f_{s})T_{star}^{4} + f_{s}T_{spot}^{4}]$$

$$f_{s} = fractional spot coverage$$

Young EBs and their inflated radii

Are the hyper inflated M dwarfs real?

Case study I: KIC 10935310

From Cakirli et al. (2013)

Case study I: KIC 10935310

From Iglesias et al. (2017)

Case study I: KIC 10935310

From Han et al. (2017)

Neither of the components are inflated

High-resolution near-infrared SB2 spectroscopy is the key

Han et al. (2017)

Case study II: T-Lyr0-08070

Healy, Han et al. (in prep)

Conclusion

1. Magnetic hyper inflation of M dwarfs may not be real

- → Neither of KIC 10935310's components are inflated (Han et al. 2017)
- → Neither of T-Lyr0-08070's components are inflated (Healy, Han, et al. in prep)

Conclusion

1. Magnetic hyper inflation of M dwarfs may not be real

- → Neither of KIC 10935310's components are inflated (Han et al. 2017)
- → Neither of T-Lyr0-08070's components are inflated (Healy, Han, et al. in prep)

2. High resolution near-infrared spectroscopy is the key

- \rightarrow Can measure SB2 EBs
- \rightarrow Less sensitive to stellar activities

Conclusion

1. Magnetic hyper inflation of M dwarfs may not be real

- → Neither of KIC 10935310's components are inflated (Han et al. 2017)
- → Neither of T-Lyr0-08070's components are inflated (Healy, Han, et al. in prep)

2. High resolution near-infrared spectroscopy is the key

- \rightarrow Can measure SB2 EBs
- \rightarrow Less sensitive to stellar activities

3. Care must be taken when analyzing EB data

Questions?