### The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets

**BJ Fulton**, Erik Petigura, Andrew Howard, Howard Isaacson, Geoffrey Marcy, Phillip Cargile, Leslie Hebb, Lauren Weiss, John Johnson, Tim Morton, Evan Sinukoff, Ian Crossfield, and Lea Hirsch

Petigura, Howard, et al. (2017) CKS I: Spectroscopic Properties of 1305 Planet-Host Stars From Kepler

Johnson, Petigura, Fulton et al. (2017) CKS II: Precise Physical Properties of 2025 Kepler Planets and Their Host Stars



# The California-**Kepler Survey**

- Led by Andrew Howard, Geoff Marcy, John Johnson
- ~50 Keck nights (2011-2015)
- HIRES spectra of 1305 stars hosting 2025 planet candidates
- Sub-samples:
  - Magnitude limited (Kp < 14.2) ( $N_* = 960$ )
  - Multis (*N*\* = 484)
  - USPs (P < 1d) ( $N_* = 71$ )
  - Habitable Zone ( $N_* = 127$ )



Petigura, Howard, et al. (2017)

Know Thy Star 2017

#### **BJ** Fulton

• High resolution: *R* ~ 50,000

- Enables measurement of vsini
- All spectra and parameters are public <u>astro.caltech.edu/~howard/cks</u>

- High SNR
  - Precision spectroscopy
  - Searches for faint SB2



#### **BJ** Fulton

Petigura, Howard et al. (2017)

# The California-Kepler Survey

 $\sigma T_{eff}$  (Q16) = 156 K  $\sigma T_{eff}$  (CKS) = 60 K  $\sigma \log g (Q16) = 0.17 dex$  $\sigma \log g (CKS) = 0.07 dex$ 

σM/M (Q16) = 14% σM/M (CKS) = 5%

σR/R (Q16) = 39% σR/R (CKS) = 10%

**BJ** Fulton

### $R_P/R_*$ X $R_*$ = $R_P$



120 stellar Radius [Solar radii]



Transit Depth Q16

Stellar Radii Q16 CKS Planet Radii Q16 CKS

**BJ** Fulton

Johnson, Petigura, Fulton et al. (2017); Fulton, Petigura, et al. (2017)



#### **BJ** Fulton

Know Thy Star 2017



Fulton, Petigura, et al. (2017)



Fulton, Petigura, et al. (2017)

## Flux Dependency



Fulton, Petigura, et al. (2017)

## Flux Dependency



Figure from Lopez+16; see also Owen+13, Lopez+13, Jin+14, Chen+16

### **Photo-Evaporation Causes Gap**

#### Predicted by Theory

- Owen & Wu (2013)
- Lopez & Fortney (2013)
- Jin et al. (2014)
- Chen & Rogers (2016)

#### • Explanation

- High energy XUV photons emitted during star's first 100 Myr erodes envelopes
- Most sub-Neptunes are ~3% H/He by mass
  - 3% H/He envelopes have longest mass loss timescale
  - Planets are "herded" into two typical sizes





Oewn & Wu (2017)



Oewn & Wu (2017)

## Photoevaporation



ExSoCal 2017

## Photoevaporation

#### Fulton, Petigura, et al. (2017)



### **Major Implications**

• Maximum core size ~3 Me

• Earth-like composition (water-poor)

• Large scale migration after 100 Myr is uncommon

# Summary

- Precision spectroscopy for 2025 KOIs
- Gap in the radius distribution between 1.5–2.0 R<sub>e</sub>
- Two size classes for small planets
- Small, close-in planets are composed of rocky cores with varying amounts of low-density gas



ExSoCal 2017

## **Backup Slides**

### **Completeness Corrections**

$$w_{i} = \frac{1}{\left(p_{\text{det}} \cdot p_{\text{tr}}\right)}$$
$$m_{i} = \left(\frac{R_{P}}{R_{\star,i}}\right)^{2} \sqrt{\frac{T_{\text{obs},i}}{P}} \left(\frac{1}{\text{CDPP}_{\text{dur},i}}\right)$$







#### **BJ** Fulton

Fulton, Petigura, et al. (submitted)

#### Aspen 2017

### **Completeness Corrections**

 $w_i = \frac{1}{(p_{\text{det}} \cdot p_{\text{tr}})}$ 

 $p_{\mathrm{tr}} = 0.7 R_{\star}/a$ 





#### **BJ** Fulton

Fulton, Petigura, et al. (submitted)

#### Aspen 2017

### **Completeness Corrections**

$$w_i = \frac{1}{(p_{\det} \cdot p_{\mathrm{tr}})}$$



### Number of Planets per Star =



$$f_{\rm bin} = \frac{1}{N_{\star}} \sum_{i=1}^{n_{\rm pl,bin}} w_i$$

$$\phi(x) = \frac{1}{N_{\star}} \sum_{i=1}^{n_{\mathrm{pl}}} w_i \cdot K(x - x_i, \sigma_{x,i})$$

Aspen 2017

**BJ** Fulton

Fulton, Petigura, et al. (submitted)

# Magnitude Cuts







**BJ** Fulton

#### Aspen 2017

# **Previous Occurrence Studies**

- Howard et al. (2012) *Planet Occurrence Within 0.25 AU* of Solar-Type Stars from Kepler
- Petigura et al. (2013) Prevalence of Earth-size planets orbiting Sun-like stars
- Morton et al. (2014) The Radius Distribution of Planets Around Cool Stars
- Owen & Wu (2014) Kepler Planets: A Tale of Evaporation











# The California-Kepler Survey

### Keck/HIRES spectra for 1305 *Kepler* Objects of Interest







Planet inflation depends on:  $M_{core}$ ,  $T_{eff}$ , internal heat sources